
Report on a SAT competition

M. Buro / H. Kleine Büning

FB 17 – Mathematik/Informatik
Universität Paderborn

Bericht Nr. 110

Reihe Informatik

November 1992

Report on a SAT competition

Michael Buro, Hans Kleine Büning

FB 17 – Mathematik/Informatik
Universität Paderborn

Postfach 1621
D–4790 Paderborn (Germany)

E–mail: kbcsl@uni–paderborn.de

Abstract

We present the results of a SAT competition organized in 1991/92 at the University
of Paderborn. Here we asked for programs solving the satisfiability problem for
formulas in conjunctive normal form.

1 Introduction

Several calculi and algorithms have been developed in order to solve the NP–complete
[Coo71,GaJo79] satisfiability problem for propositional formulas, i.e. to decide whether or
not there is a truth value assignment satisfying the given formula.

A lot of papers have been published investigating the pros and cons of the differ-
ent approaches. Some of them compare the minimal proof length of proof systems like
resolution, cutting plane etc. and look for formulas which are hard to decide. Another ap-
proach is the average case analysis which has been carried out mainly for Davis–Putnam
[DaPu60] algorithms. A few papers contain experimentally results discussing for which
formulas one algorithm is better than another algorithm.

We were looking for the quickest program solving the satisfiability for formulas in
conjunctive normal form. Obviously, what quickest program means, depends essentially
on the set of formulas we use for the evaluation. We randomly generated a set of formulas
which fulfill some properties and the quickest program has been determined by adding
the time the programs needed for deciding the satisfiability of these formulas. In order
to avoid the difficulties with programs written in different programming languages, we
asked for programs written in the C programming language. We acknowledge gratefully
the sponsorship of the competition by IBM Germany.

1

2 Terms of participation

The submitted programs for deciding the satisfiability of CNF formulas had to be imple-
mented in the Kernighan/Ritchie or ANSI C programming language. The documented
source code was accepted as an ASCII textfile on a 3 1/2 ” MS DOS diskette. Data or
object files were not allowed. The module was compiled and linked to a test program
which firstly called init_sat(). Here, some data could be initialized. Then, sat() was
called several times to decide respectively the satisfiability of a CNF formula. The start-
ing address of the character string which encodes the formula in question was given to
sat(). The return value had to be 0 if the formula was not satisfiable. Otherwise, sat()
had to yield a value not equal to 0. The formulas had the following syntax:

formula → clause ’\0’ | clause formula
clause → ’(’ literalseq ’)’

literalseq → literal | literal ’,’ literalseq
literal → variable | ’-’ variable

Variables were encoded as decimal numbers in the range of 1 to 1000. For example, the
’\0’ terminated C character string "(-1,2,-3)(4,-1)(2)(103,103,2)" is a formula.
It describes the Boolean formula (x̄1 ∨ x2 ∨ x̄3) ∧ (x4 ∨ x̄1) ∧ (x2) ∧ (x103 ∨ x103 ∨ x2) in
a compressed form.

3 Test formulas

In order to determine the speed of the algorithms, we generated seven groups of formulas
with 40 CNF formulas each. Groups 1..6 consisted of formulas with clauses of constant
length (3..8), variables were negated with probability 1/2, there was no double occurrence
of variables in a clause, and the clauses were uniformly distributed. In group 7 the
clause lengths varied according to a special distribution (see below) and each literal in
a clause was uniformly distributed. The number of variables and clauses was chosen
empirically such that in each group formulas were satisfiable with probability ≈ 1/2 and
solvable in approximately equal times using our SAT solver which is a Davis–Putnam
implementation. Due to the enormous differences of running time, we used two sets of
test formulas to get a ranking of more than six participants. Here are the parameter sets
for the seven times two groups:

Groups 1..6

hard
Clause length 3 4 5 6 7 8
#Variables 215 87 55 40 32 27
#Clauses 920 860 1,163 1,745 2,807 4,831

easy
Clause length 3 4 5 6 7 8
#Variables 120 48 29 21 16 13
#Clauses 510 487 621 924 1,460 2,325

2

Group 7

– 110 variables and 2175 clauses
hard – Clause lengths 3..10 uniformly distributed with Prob. 0.99,

50..100 with Prob. 0.01

– 55 variables and 1087 clauses
easy – Clause lengths 3..10 uniformly distributed with Prob. 0.99,

25..50 with Prob. 0.01

4 Evaluation and results

The closing date of the competition was April, 2nd. 1992. An international field of 36
authors took part. After a simple check, it turned out that at least 26 programs were
incorrect due to a wrong syntax (e.g. C++ Code), wrong return values, illegal pointer
references etc. Many programs had been developed using MS DOS which doesn’t recognize
the latter faults. Since we wanted to determine running times of more than ten programs,
the authors of the wrong solvers got the chance to correct their code up to May, 30th. We
received 25 corrected programs, such that 35 programs took part in the second round.

The programs were compiled on a UNIX Workstation and linked to a test program
which provided the ASCII representation of the formulas to the program in question.
Again, some of them failed to solve easy test formulas like ”(1,2)(-1,2)(1,-2)(-1,-2)”. To
our surprise, many programs exceeded the estimated running time by orders of magnitudes
while trying to solve the hard formulas. Therefore, a second set of much easier formulas
were generated to get a ranking of more than six programs. While testing the hard
formulas, three programs failed and only six had acceptable running times with respect
to the fastest program. The other programs were aborted after 125,000 seconds CPU
time. While solving the easy formulas, four programs stopped, due to a segmentation
fault and ten entries had running times under 25,000 seconds. The following tables show
the running times in detail:

Hard formulas

Participant Time in seconds
Bhm 19,255

Stamm 23,667
Eisele 40,400
Drre 43,015

Pretolani 76,464
Purdom 120,961

Easy formulas

Participant Time in seconds
Bhm 268

Stamm 298
Eisele 436
Drre 480

Durdanovic 670
Pretolani 680
Purdom 717

Dunker/Bauerfeind 1,539
Burghardt 10,949
Lippold 12,444

3

Altogether, 14 out of 35 programs were incorrect, even after a correction. Six programs
solved the hard formulas in a reasonable amount of time and only ten programs solved
the easy set of formulas. Taking into account the results of the programs for the two sets,
one gets the following ranking of the top ten entries:

1 Bhm
2 Stamm
3 Eisele
4 Drre
5 Pretolani
6 Purdom
7 Durdanovic
8 Dunker/Bauerfeind
9 Burghardt
10 Lippold

5 Program descriptions

In this section the authors of the first six entries give insight into their programs.

5.1 SAT solvers “Bhm” and “Stamm”

The SAT solver “Bhm” is a result of a work in the group of Prof. Speckenmeyer in
Düsseldorf. The programs “Böhm” and “Stamm” only differ w.r.t. the heuristics that
have been used, the data structures as well as the main program are identical in both
implementations.

SAT solver “Bhm” (Max Böhm)

The SAT solver “Bhm” 1 is based on the well known Davis–Putnam–Procedure, which has
been enhanced by some heuristics for the selection of variables. The algorithm operates
on optimized data structures allowing time efficient access operations.

Algorithm

To solve or to simplify a formula we use the following approach:

1. If F is empty, then return (input formula is satisfiable). If there exists an empty
clause, then backtrack.

2. Literals in clauses of length one gets the truth value true. (unit–clause–rule).

1This research was supported by the state of Nordrhein–Westfalen in the Forschungsverbund Paralleles

Rechnen

4

3. Literals appearing positively (negatively) only in the formula, are assigned true
(false). (pure–literal–rule)

4. A literal x is chosen using a heuristic approach. x is assigned first by the value true,
then by the value false. The two simplified formulas are solved recursively.

Heuristics

The idea of the heuristic used in step 4 is based on the idea of selecting a literal for
assignment occurring as often as possible in the shortest clauses of the formula. Therefore,
a shortest clause is either removed or reduced in size by one. Performing this step a few
times, clauses of length 1 will result often, hence the formula collapses fast.

In detail, a literal x with maximal vector (H1(x), H2(x), . . . , Hn(x)) under the lexico-
graphic order is chosen, where

Hi(x) = α max(hi(x), hi(x̄)) + β min(hi(x), hi(x̄)),

and hi(x) is the number of clauses of length i, which contain x (lexicographic heuristic).
Note that Hi(x) = Hi(x̄), therefore x is chosen only if

∑
i hi(x) ≥

∑
i hi(x̄). In the

implementation we have chosen α = 1 and β = 2.

Data Structures

To get time efficient access operations, we have developed an optimized data structure:

• The formula is stored as a list of clauses (ordered by clause length). Direct access
to parts of the formula with constant clause length k is supported.

• A clause is represented by a list of its literals.

• For each literal x a list of clauses containing x exists.

This data structure allows to assign a literal x with the value true in time O(
∑

c∈F :x∈c |c|+∑
c∈F :x̄∈c 1) (with the value false in time O(

∑
c∈F :x∈c 1+

∑
c∈F :x̄∈c |c|), resp.). It is important

to note that the space needed to store the resulting formula is reduced by the same size.
Using suitable pointer techniques in the removed parts of the formula, it is possible

to restore the initial formula after many assignments, using reverse operations in reverse
order. This needs the same amount of time (!) as previously needed by assigning the
literals, only. We mention that this also results in linear space complexity in the size of
the actual formula.

Address: M. Böhm, Universität Düsseldorf,
E–mail: boehm@engels1.cs.uni–duesseldorf.de

5

SAT solver “Stamm” (Hermann Stamm)

The program “Stamm” is based on the program “Bhm” but additionally uses the following
2–SAT procedure (executed between step 2 and step 3 of program “Bhm”):

• The implication graph G is built using the 2–SAT part F2 = {c ∈ F : |c| = 2} of the
formula. This means for each clause (x, y) ∈ F2 that G contains the edges x̄ → y

and ȳ → x.

• The strongly connected components (scc) of G are determined (in linear time). If
a scc contains both a literal x and its complement x̄, the actual formula F will be
unsatisfiable, otherwise the literals of each scc are identified.

• The resulting (directed acyclic) graph G′ is searched for paths from a literal x to its
complement x̄. If such a path exists, we have to assign false to x, true to x̄ and all
literals reachable from x̄ have to be assigned true.

Tests have shown that the sizes of the search trees due to the additional 2–SAT procedure
is reduced by about 50% compared with the program “Bhm”. In contrast to the program
“Bhm”, however, caused by the 2–SAT procedure, there is no longer a linear relation
between the time spent for evaluating a single vertex of the search tree and the amount of
size reduction of the formula. For that reason, the overall running time of solver “Stamm”
is a bit slower than of solver “Bhm” if the input consists of random formulas (formulas of
a special structure are sometimes solved faster).

Address: H. Stamm, Universität Bonn,
E–Mail: hermann@holmium.informatik.uni–bonn.de

5.2 SAT solvers “Eisele” and “Dörre”
Basic version (Andreas Eisele)

The submitted program tries to find a satisfying variable assignment by means of system-
atic testing and backtracking. For a given formula the following steps are performed as
long as possible:

• If the formula contains a unit clause the corresponding variable is instantiated.
Therefore other clauses in which this variable appears in the same polarity are
already satisfied and can be ignored for further processing. Occurrences of the
variable in reverse polarity are removed from the containing clauses. If this leads to
new unit clauses, these are treated accordingly.

• The appearance of an empty clause indicates a contradiction. All modifications
done starting from the last choice–point are withdrawn and the other branch of this
choice is investigated. If no choice–point remains, the formula cannot be satisfied.

• If all occurrences of a variable have the same polarity, an appropriate value can be
assigned to the variable without loss of generality. Thus, all clauses with the same
variable can be ignored.

• If no open clause remains, a solution has been found.

6

If none of the above conditions apply for a heuristically chosen variable, a choice point
will be introduced and both assignments will be tried. The heuristic method tries to
locate variables whose assignment simplifies maximally the remaining formula. We use a
weighted number of occurrences, whereas occurrences in two–literal clauses count more
than other occurrences. When guessing the value of a variable, the branch with the
greatest estimated chance of success will be treated first. For satisfiable formulas, this
can — in the average — reduce the fraction of the search space that has to be traversed.

In order to execute this process in an efficient way, we use data structures which
facilitate the access of the following information:

• For each clause of the formula: Its original length, a list of literals, its current state
(already satisfied or still open) and the number of literals which are still satisfiable.

• For each occurring variable: Lists of clauses with positive and negative occurrences,
respectively, the number of positive and negative occurrences in clauses which are
still open, and the same numbers restricted to occurrences in binary clauses.

Since modifications to these data structures have to be withdrawn during backtracking,
all such modifications are recorded in an undo–stack.

Address: A. Eisele, Universität Karlsruhe,
E–mail: eisele@ira.uka.de

Special treatment of binary clauses (Jochen Dörre)

This modification uses a limited amount of forward checking in order to immediately
recognize a situation in which for some variable only one assignment may still lead to
a solution and in which this can be found out without introducing new choice points.
Only when this check does not reveal such a forced variable assignment, the guessing of
a (heuristically good) variable assignment continues.

The following measures are taken in order to reduce the costs of these tests.

1. To check a truth value B for a variable V we only consider the current binary clauses.
The set of literals which are forced to be true if V = B, is calculated and checked
for a pair {+L,−L}. As soon as such a pair is found, the assignment V = B can
be rejected.

2. This check is only performed on a variable which occurs in a clause which has become
binary since the last choice point and only if that variable occurs positively as well
as negatively in some binary clause. A stack of the variables satisfying this condition
is maintained. The variables of this stack are treated (unless they have been bound
meanwhile) just before the introduction of a choice point would be necessary.

By this optimization, formulas with exclusively binary clauses (2–SAT) can be deter-
mined without any guessing. Also in the case where binary and longer clauses are mixed
up, a very frequent case in applications, a much smaller search space has to be considered
leading often to a significant improvement of efficiency.

Address: J. Dörre, Universität Stuttgart,
E–mail: jochen@adler.ims.uni–stuttgart.de

7

5.3 SAT solver “Pretolani”

The B–Reduction Algorithm with Extended 2–SAT Relaxation.
(G. Gallo and D. Pretolani)
Our ”B–Reduction Algorithm with Extended 2–SAT Relaxation” (BRR for short) is an
enumerative method originally stated in terms of Directed Hypergraphs. In the hyper-
graph setting, a clause corresponds to a directed hyperarc, while a CNF formula S corre-
sponds to a hypergraph HS. A B–Reduction HB of HS corresponds to a Horn subformula
SB of S, obtained deleting all but one of the positive literals in each non–Horn clause; S is
satisfiable if and only if it admits a satisfiable B–Reduction, i.e. a satisfiable subformula
SB. A B–Path P in HB corresponds to a minimal refutation for SB; in such a refutation,
there exists one and only one last clause, i.e. one containing only negative literals. Our
algorithm actually reduces a SAT problem to a (possibly exponentially large) sequence of
Horn–SAT problems; we can formally describe BRR as follows:

Algorithm BRR

Step 0 Let S the input formula; set Q = {S};
Step 1 If Q is empty, return ”no”; otherwise remove a subformula S from Q;
Step 2 Apply Unit Resolution to S; if a contradiction is found, go to Step 1;

if S is solved, return ”yes”;
Step 3 Solve an Extended 2–SAT relaxation; if a contradiction is found, go to Step 1;
Step 4 Select a B–Reduction HB of the hypergraph HS corresponding to S;

if HB is satisfiable, return ”yes”; otherwise select a B–hyperpath Π ⊂ HB;
Step 5 Let {n1, . . . , nk} the negative literals of the negative clause in Π;

add to Q the subformulas S1, S2, . . . , Sk generated from S as follows:
in formula Si: ni is set to false, and nj, 1 ≤ j < i, are set to true.

Go to Step 1.

The Extended 2–SAT relaxation searches a truth assignment satisfying the subset of 2–
clauses (clauses of 2 literals) in S with the following restriction: a truth assignment which
makes all the literals in a 3–clause false is rejected. Steps 2), 3) and 4) are formulated as
path problems on hypergraphs, and implemented as hypergraph algorithms; a linear time
implementation of Unit Resolution is used in Step 2).

A first version of this algorithm, in which Step 3) is omitted, is described in: G. Gallo
and D. Pretolani: ”A New Algorithm for the Propositional Satisfiability Problem”, TR–
18/92, Dipartimento di Informatica, Universita’ di Pisa (to appear on Discrete Applied
Mathematics).

Address: D. Pretolani, University Pisa,
E–mail: pretolani@di.unipi.it

8

5.4 SAT solver “Purdom”

(Paul Purdom)

The following algorithm presents the basic ideas behind the entry.

(Preprocessing.) If a variable has more negative than positive occurrence, then
reverse the polarity of each occurrence of the variable.

Clause Order Backtracking with Probing for CNF problems.

1. (Empty.) If the CNF problem has an empty clause, then return with no solutions.

2. (Unit clause.) If any clauses have just one variable, set the variable in the way that
makes the clause be true.

3. (Pure literal.) If any variable appears only positively or only negatively, set the
variable so that its clauses are true.

4. (Probe.) If there are no all–positive clauses or all–negative clauses, then stop all the
recursions and report that there is a solution. Otherwise select the type (all–positive
or all–negative) of clause that occurs least often.

5. (Select.) Consider variables that occur in those clauses that have the chosen type
and that are no longer than any other such clauses. Among these variables, select
the variable that occurs most often in clauses of the selected type.

6. (Split.) Generate two subproblems by setting the variable to true and to false.

I wish to thank Indiana University for the use of its equipment and the support of its staff.
I wish to thank Professors Cynthia Brown and John Franco for insightful discussions of
satisfiability algorithms.

Address: P. Purdom, Indiana University, E–mail: pwp@zebra.cs.indiana.edu

6 Conclusion
One conclusion of the competition seems to be that at the moment the quickest algorithms
for deciding the satisfiability of propositional formulas in conjunctive normal form are
Davis–Putnam–based programs. Beside this observation, we are surprised about the
difficulties in writing correct C programs.

References

[Coo71] S. A. Cook: The Complexity of Theorem–Proving Procedures, Proc. 3rd ACM

Symp. on Theory of Computing (1971), pp. 151–158

[DaPu60] M. Davis, H. Putnam: A Computing Procedure for Quantified Theories, JACM

7 (1960), pp. 201–215

[GaJo79] M. R. Garey, D. S. Johnson: Computers and Intractability, Freeman and Com-

pany, New York (1979)

9

