
A simple linear time algorithm

for embedding maximal planar graphs

1

Hermann Stamm-Wilbrandt

Institut f�ur Informatik III

Universit�at Bonn

hermann@holmium.informatik.uni-bonn.de

Abstract

All existing algorithms for planarity testing/planar embedding can be grouped into

two principal classes. Either, they run in linear time, but to the expense of complex

algorithmic concepts or complex data-structures, or they are easy to understand and

implement, but require more than linear time [2].

In this paper, a new linear-time algorithm for embedding maximal planar graphs is

proposed. This algorithm is both easy to understand and easy to implement. The

algorithm consists of three phases which use only simple, local graph-modi�cations.

In addition to planar embedding, the new algorithm allows to test graphs for maximal

planarity. The generation of Straight Line Drawings by a technique of Read [12] can

be naturally incorporated into the algorithm. We also demonstrate how to generate

random (maximal) planar graphs.

The algorithm presented constitutes a �rst step towards a simple, linear-time solution

for embedding general planar graphs.

2 3

1 Introduction

One of the main topics in graph theory is the concept of planarity. In the 18th century Euler

discovered one of the �rst results, the well-known \Polyederformel". It was Kuratowski [9] in

1930 who gave a characterization of planar graphs in terms of forbidden homeomorphic subgraphs:

A graph is planar if, and only if, it possesses no subgraph homeomorphic to either K

5

or K

3;3

.

In 1933 Whitney [15] developed the concept of combinatorial/planar duals of graphs and showed

that a graph has a dual if, and only if, it is planar. In 1936 Wagner [14] proved the existence

of Straight Line Drawings for planar graphs. Demoucron et al. [4] published the �rst algorithm

with known polynomial time complexity for testing the planarity of graphs in 1964. The required

running time is quadratic. In 1974 the �rst linear time planarity testing algorithm was developed

by Hopcroft and Tarjan [8]. It is based on another algorithm by Auslander and Parter [1]. They

achieved linear running time by extensive use of depth �rst search on graphs. Two years later

Lueker and Booth [11] improved a planarity testing algorithm by Lempel et al. [10] of 1966. This

1

The sources of an implementation of all algorithms and data structures of this paper can be obtained by

anonymous ftp on ftp.cs.uni-bonn.de in directory /pub/paper/infIII as �le IAI-TR-93-10.src.tar.Z . This report can

be found in the same directory as �le IAI-TR-93-10.ps.Z .

2

This goal has been recognized as a signi�cant open problem in [2].

3

It is an easy matter to triangulate a planar graph in linear time if given an embedding of it. Therefore any simple

linear time algorithm for triangulating a planar graph (without an embedding given) would turn our algorithm into

a simple linear time algorithm for planarity testing/planar embedding.

algorithm needs only linear running time by using PQ-trees. Both linear time algorithms require

lengthy explanation and veri�cation; they are also di�cult to implement. Many of the mentioned

algorithms may be modi�ed to embedding algorithms; in this case the goal is to reject non-planar

graphs as well as to embed planar ones.

In this paper, a new linear-time algorithm for embedding maximal planar graphs is proposed.

This algorithm is both easy to understand and easy to implement. It consists of three phases

which use only simple, local graph-modi�cations. Our techniques deeply depend on an algorithm

for computing planar 3-bounded orientations by Chrobak and Eppstein [3].

Section 2 contains the basic de�nitions. In Section 3 the data structures required for implemen-

tation are described. This is followed in Section 4 by a description of the basic operations of the

algorithm, i.e. reduction and inverse reduction. In Section 5 the embedding algorithm for maximal

planar graphs is presented. It is extended to additionally testing maximal planarity in Section

6. In Section 7 the generation of Straight Line Drawings for maximal planar graphs is described.

Finally in Section 8 an algorithm for generating random (maximal) planar graphs is given.

The algorithm presented constitutes a �rst step towards a simple, linear-time solution for

embedding general planar graphs. If a simple linear time algorithm for triangulating any planar

graph without an embedding given existed then our algorithmwould be extended to a simple linear

time algorithm for planarity testing/planar embedding.

2 Basic de�nitions

The terminology used in this paper follows that of Even [5]. Let G = (V;E) be a planar graph. For

each v 2 V denote by INC[v] the incidence list of v in G. We consider an embedding of G to be

an ordering of the incidence lists of G, such that for each v 2 V the order of the edges in INC[v]

corresponds to a counter-clockwise traversal of the edges in a �xed embedding of G in the plane.

A simple planar graph is called maximal planar if adding any new edge results in a non-planar

graph. In this paper the complete (maximal planar) graph on 4 vertices K

4

is considered to be

the smallest maximal planar graph w.r.t. the number of vertices. Maximal planar graphs possess

no vertices of degree less than 3 because they are triconnected (2.1).

The next 4 lemmas deal with properties of maximal planar graphs. Their proofs can be found

in [5].

Lemma 2.1 Maximal planar graphs are triconnected.

Lemma 2.2 The embedding of a planar graph in the plane possesses only triangular faces if, and

only if, the graph is maximal planar.

Lemma 2.3 A simple planar graph G = (V;E) is maximal planar if, and only if, jEj = 3jV j � 6.

Lemma 2.4 A triconnected planar graph has a unique embedding onto the sphere. After choosing

the outer face the rest of the embedding in the plane is also unique. Maximal planar graphs are

triconnected and thus possess also unique embeddings in the plane (w.r.t. a chosen outer face).

The next simple lemma deals with a property of outerplanar graphs (planar graphs with all

vertices lying on a common face); the proof can be found in [5], too.

Lemma 2.5 Each outerplanar graph has at least 2 vertices of degree at most 2.

De�nition 1 A vertex v of G = (V;E) is called small, if degree(v) < 18, otherwise it is called

large. A vertex v 2 V is called reducible if it satis�es one of the following conditions:

� degree(v) � 3

� degree(v) = 4 and v has at least 2 small neighbors

� degree(v) = 5 and v has at least 4 small neighbors

Lemma 2.6 Each planar graph G = (V;E) with jV j � 4 has at least 4 reducible vertices.

2

Proof. Since the number of reducible vertices does not increase if one adds edges, it su�ces

to prove the lemma for maximal planar graphs. A maximal planar graph with n vertices has

m = 3n � 6 edges (2.3). Denote by n

i

the number of vertices of degree i and by r

4

(r

5

) the

number of reducible vertices of degree 4(5). Maximal planar graphs are triconnected (2.1) and

thus n

0

= n

1

= n

2

= 0 holds for them.

X

i�3

in

i

= 2m = 6n� 12 = �12 +

X

i�3

6n

i

=)

X

i�3

(i � 6)n

i

= �12

=) 2n

4

+ n

5

= 12� 3n

3

+

X

i�7

(i � 6)n

i

Counting the edges between non-reducible vertices of degree 4 or 5 and large vertices gives:

3(n

4

� r

4

) + 2(n

5

� r

5

) �

X

i�18

in

i

This leads to:

2

3

X

i�18

in

i

� (2n

4

+ n

5

)� 2r

4

�

4

3

r

5

+

1

3

n

5

= 12� 3n

3

� 2r

4

�

4

3

r

5

+

1

3

n

5

+

X

i�7

(i� 6)n

i

=)

X

i�18

(2i)n

i

�

X

i�7

(3i� 18)n

i

� 36� 9n

3

� 6r

4

� 4r

5

+ n

5

Now we can bound the sums from above by 0:

X

i�18

(2i)n

i

�

X

i�7

(3i � 18)n

i

=

X

i�18

(18� i)n

i

�

X

7�i<18

(3i� 18)n

i

� 0

Eliminating the sums we get:

9n

3

+ 6r

4

+ 4r

5

� 36 + n

5

=) n

3

+ r

4

+ r

5

� n

3

+

2

3

r

4

+

4

9

r

5

� 4 +

1

9

n

5

� 4

The proof is completed since the number of reducible vertices is given by n

3

+ r

4

+ r

5

. 2

Lemma 2.7 Let v be any vertex of a maximal planar graph G = (V;E) and let N (v) denote the

neighborhood of v. There are at least two vertices in N (v) which are adjacent to exactly two other

vertices of N (v).

Proof. Denote by v

1

; : : : ; v

k

the vertices of N (v) in the counter-clockwise order in which they

appear around v in a �xed embedding of G in the plane. Since G is maximal planar, all faces are

triangles (2.2). Thus v

i

and v

(imod k)+1

are adjacent for 1 � i � k and therefore each v

i

has at least

two neighbors in N (v). The induced graph on the vertices of N (v) is outerplanar and thus there

are at least two vertices of v

1

; : : : ; v

k

with at most two neighbors in N (v) (2.5). This completes

the proof. 2

3 Data structures

Here our special view on the data structures is presented which allows us to implement the algo-

rithms in linear time.

For the rest of the paper we represent the vertices and edges of a graph by positive numbers.

Each vertex has information on its predecessor and successor in the doubly linked list of vertices

of the graph. This allows iteration over the vertices as in e.g. the statement forall vertices(v;G).

Each vertex v additionally knows about its (doubly linked) incidence list INC[v]. Each edge

e = fu; vg knows about its incident vertices source(e) = u and target(e) = v without the usual

directed interpretation. Additionally each edge e = fu; vg knows about its positions in INC[u]

and INC[v] and its predecessor and successor in the doubly linked list of edges of the graph (e.g.

for iteration purposes as in forall incident edges(e; v)). The identi�cation of vertices/edges with

3

numbers allows in an easy way to associate information with them by using ordinary arrays

4

.

The information possessed by vertices/edges is not modi�ed after removing them, such that the

reinsertion of a vertex/edge into the graph can be done in constant time by just giving its (old)

number

5

. Both operations, the normal creation of a new edge e and the reinsertion of an old edge

e, allow to specify the positions of e in INC[source(e)] and INC[target(e)]; the default positions

are either at the ends of the lists or the position before removal. The non-existence of a vertex/edge

as a result of some function is indicated by the value 0. The cyclic successor/cyclic predecessor of

an edge e = fu; vg in e.g. INC[v] is either given by its successor/predecessor (see above) if this is

not 0, or it is given by the �rst/last edge in INC[v].

Lemma 3.1 There is a data structure vertex set N for a graph G = (V;E) providing the following

constant time operations: N insert(v) (N = N[fvg), N remove(v) (N = N�fvg), N member(v)

(v 2 N?), N empty() (N = ;?), N choose() (returns any v 2 N if N 6= ; and returns 0 otherwise)

and forall(x;N) (iteration: 8x 2 N). The time necessary to initialize N as the empty vertex set

is O(jV j).

Proof. A vertex set can be represented by a doubly linked list and an array. The actual members

of the vertex set are those of the doubly linked list. For each vertex in the vertex set its position

within the doubly linked list is stored in the array; for the vertices not in the vertex set the value

0 is stored in the array. 2

De�nition 2 A compaction of a graph G = (V;E) is a mapping COMPACT : V ! fE

0

jE

0

�

E g such that COMPACT [v] � INC[v] for each vertex v with the following properties:

� 8e = fu; vg 2 E : e 2 COMPACT [u][COMPACT [v]

� 8e = fu; vg 2 E : COMPACT [u]\ COMPACT [v] = ;

COMPACT is called k-bounded for some constant k > 0 if, and only if, there are at most k edges

in COMPACT [v] for all vertices v of G.

Lemma 3.2 Planar graphs always possess a 5-bounded compaction.

Proof. Let G = (V;E) be a planar graph. Due to (2.3) we have jEj � 3jV j�6 and

P

v2V

degree(v)

= 2jEj � 2(3jV j� 6) < 6jV j. Therefore planar graphs always possess a vertex of degree at most 5.

Now set H = G and repeat the following procedure until V (H) = ;:

� �nd a vertex v of H with degree(v) � 5

� set COMPACT [v] = INC[v] = fe 2 E(H)jv 2 eg

� remove vertex v from H

This procedure de�nes a 5-bounded compaction of G. 2

Corollary 3.3 Given a planar graph G = (V;E) and a 5-bounded compaction COMPACT of

G it is decidable in constant time whether an edge fu; vg is in E or not (simply examine L =

COMPACT [u][COMPACT [v]. If fu; vg 2 E it must be a member of L and jLj � 10 = O(1)).

De�nition 3 The data type urn is essentially the same as the one used in mathematics for prob-

ability experiments. It is a bounded data type providing the following operations:

� urn U (n) creates an empty urn capable of holding a maximum of n elements

� U put(x) puts element x into the urn U

� U draw() removes a randomly chosen element from U and returns it

� U empty() returns true if U is empty and false otherwise

4

This is exactly the way in which source, target, ... can be realized.

5

Newly created vertices and edges get the lowest \unused" number available in each case starting with 1. Keep

in mind that removing and reinserting vertices/edges are the key operations of the algorithms.

4

� U clear() removes all entries from U

Lemma 3.4 The data type urn can be implemented such that all operations mentioned require

only constant time.

Proof. An urn can be represented by a dynamic array A and an integer actual. The creation of

size n is done by allocating an array with n entries (range 1; : : : ; n) to A and setting actual = 0.

The element x is put into the urn by actual = actual + 1; A[actual] = x; . Testing whether the

urn is empty is done by return (actual==0); and clearing of the urn is done by actual = 0; .

The drawing of a random element is done by

choose randomly k 2 f1; : : : ; actualg; x = A[k]; A[k] = A[actual]; actual = actual � 1; return x; .

This completes the proof. 2

4 Reductions

De�nition 4 [3] A reduction of a reducible vertex v

in a maximal planar graph G=(V,E) is, depending

on its degree, de�ned by:

� If degree(v) = 3, then simply remove v from G

� If degree(v) 2 f4; 5g, then let w 2 N (v) be

a vertex with exactly two neighbors in N (v)

(2.7). Now remove v and add new edges fw; xg

to G for all x 2 (N (v) � (fwg [N (w))).

v v

w

w

w

v

w

degree 3 degree 4 degree 5

Lemma 4.1 Let G = (V;E) be a maximal planar graph with jV j > 4 and let v be any reducible

vertex of G. Applying the reduction of v again results in a maximal planar graph.

Proof. Since G is maximal planar all faces

6

incident to v are triangles (2.2). After the removal

of v these faces are joined to a face of length degree(v). Inserting the new edges if degree(v) > 3

splits this face into 2 or 3 triangles, otherwise it is already a triangle. Thus the resulting embedding

is triangular and therefore the graph is maximal planar (2.2). 2

Lemma 4.2 The reduction of a reducible vertex v in a maximal planar graph G = (V;E) can be

done in constant time.

Proof. The need of only constant time is obvious for degree(v) = 3. In case of degree(v) = 5

we can search for the vertex w among the small vertices of N (v) because there are at least 4 of

them by de�nition, and at least two vertices of N (v) have exactly two neighbors in N (v) (2.7).

Thus the determination of w can be done in O(5 + 4 � 18) = O(1) time for degree(v) = 5. In

case of degree(v) = 4 we check �rst if any of the (at least 2) small vertices in N (v) has exactly 2

neighbors in N (v). If so, we take this vertex as w and we are done. Otherwise there exist exactly

2 small neighbors of v which are adjacent to all other vertices of N (v). The remaining 2 large

vertices in N (v) cannot be adjacent due to planarity (otherwise there is a K

5

as induced subgraph

on fvg [N (v)). Therefore we take any of the latter as w. Thus the case degree(v) = 4 needs also

O(4 + 3 � 18) = O(1) time. 2

De�nition 5 Let G

0

= (V

0

; E

0

) be an embedding of the graph resulting from the reduction of

a reducible vertex u of a maximal planar graph G = (V;E) (V

0

= V � fug). The 5-bounded

compaction of G

0

is given by COMPACT [v] for all vertices v of G

0

. The inverse reduction for

the vertex u and the graph G

0

is the inverse operation to the reduction of u in G. It is de�ned

depending on k = degree(u) in G by:

6

(of any �xed embedding of G in the plane (2.4))

5

� if k = 3 denote by x

0

; y; z the neighbors of u in G. Find edges fx

0

; yg,fy; zg and fz; x

0

g of

G

0

in constant time (3.3). If fx

0

; yg is the cyclic successor of fz; x

0

g in INC[x

0

] set x

1

= y

and x

2

= z else set x

1

= z and x

2

= y.

� if k = 4 denote by fx

0

; x

2

g the edge

added during the reduction of u in G.

Let fx

0

; x

1

g be the cyclic successor of

fx

0

; x

2

g in INC[x

0

] and fx

0

; x

3

g be

its cyclic predecessor in INC[x

0

]. Re-

move edge fx

0

; x

2

g from G

0

and from

COMPACT [x

0

], COMPACT [x

2

] re-

spectively.

� if k = 5 denote by fx

0

; yg the �rst

edge and by fx

0

; zg the second edge

added during the reduction of u in G. If

fx

0

; yg is the cyclic successor of fx

0

; zg

in INC[x

0

] set x

2

= y and x

3

= z else

set x

2

= z and x

3

= y. Let fx

0

; x

1

g

be the cyclic successor of fx

0

; x

2

g in

INC[x

0

] and fx

0

; x

4

g be the cyclic pre-

decessor of fx

0

; x

3

g in INC[x

0

]. Re-

move edges fx

0

; x

2

g and fx

0

; x

3

g from

G

0

and from either COMPACT [x

0

] or

COMPACT [x

2

] or COMPACT [x

3

].

x
0

x
1

x
2

x
0

x
1

x
2

x
0

x
1

x
2

x
3

x
3

x
2

x
1

x
0

x
0

x
1

x
2

x
2

x
1

x
0

x
3

x
3

x
4

x
4

k=5k=4k=3

u u u

The other edges can be found in constant time, too. For instance fx

1

; x

2

g in case k = 4 is

the result of G cyclic incident succ(fx

0

; x

1

g; x

1

). Now reinsert the vertex u in the graph G

0

.

Reinsert edges fu; x

i

g between edges fx

(i�1)modk

; x

i

g and fx

i

; x

(i+1)modk

g in INC[x

i

] successively

for i = k � 1; k � 2; : : : ; 1; 0 and append them at the end of INC[u]. Thus the order of INC[u] is

given by ffu; x

k�1

g; fu; x

k�2

g; : : : ; fu; x

0

gg. Set COMPACT [u] = INC[u].

Lemma 4.3 The inverse reduction for vertex u and graph G

0

results in an embedding of G and a

5-bounded compaction of G.

Proof. Since COMPACT is a 5-bounded compaction for G

0

and jCOMPACT [u]j= jINC[u]j=

k � 5 the modi�edCOMPACT is a 5-bounded compaction for G. Since the edge fu; x

i

g is inserted

in the right place in INC[x

i

] and the order of edges in INC[u] corresponds to a counter-clockwise

traversal of the edges incident to u the inverse reduction results in an embedding of G. 2

Lemma 4.4 The inverse reduction above can be done in constant time if

� (the number representing) u is given

� { (the numbers representing) x

0

, y and z are given in case k = 3

{ (the number representing) fx

0

; x

2

g is given in case k = 4

{ (the numbers representing) fx

0

; yg and fx

0

; zg are given for k = 5

� (the numbers representing) the removed edges fu; x

i

g are known for 0 � i < k.

Proof. Only constant time is necessary since the use of the compaction and examining the inci-

dence lists takes only constant time. 2

5 Embedding maximal planar graphs

The algorithm for embedding maximal planar graphs consists of 3 phases. During the �rst phase

the graph G = (V;E) is reduced to the K

4

by repeated reductions. Then in the second phase

the resulting graph, the K

4

, is embedded. In the third phase all reductions of the �rst phase are

6

undone by the corresponding inverse reductions in reverse order. This results in an embedding of

each graph between K

4

and G and therefore in an embedding of G itself.

The set of reducible vertices is maintained in the vertex set REDUCIBLE, which is initially

�lled by all reducible vertices v 2 V . The next lemma shows that updating REDUCIBLE after

a reduction can be done in constant time.

Lemma 5.1 Let G = (V;E) be a maximal planar graph, let REDUCIBLE be the vertex set of

reducible vertices of G and v 2 REDUCIBLE. Denote by G

0

= (V

0

; E

0

) the graph resulting from

G by the reduction of vertex v (V

0

= V � fvg). The necessary updates for REDUCIBLE to be

the set of reducible vertices of G

0

can be done in constant time.

Proof. [3] First we need a procedure to update the (non-)presence of a vertex x in REDUCIBLE

in constant time (3.1). This is simply done by:

Update(vertex x, vertex set REDUCIBLE)

if (x is reducible) REDUCIBLE insert(x);

else REDUCIBLE remove(x);

Having done the reduction of vertex v in G this changes only the degrees of vertices of N (v).

It can have the following e�ects:

� A vertex x 2 N (v) had degree(x) > 5 but has now degree(x) � 5. Therefore x may be

reducible.

� A vertex x 2 N (v) had degree(x) � 5 but has now degree(x) > 5. Now x may have lost

reducibility.

� A vertex x 2 N (v) was large, but now is small. Any neighbor z of x with degree(z) � 5 may

now be reducible.

� A vertex x 2 N (v) was small, but now is large. Any neighbor z of x with degree(z) � 5 may

now have lost its reducibility.

Thus all that needs to be done is looking at the local neighborhood H = N (v) of v after the

reduction of v:

Update local(vertex set H, vertex set REDUCIBLE)

vertex x; y;

forall(x;H)

if ((x is small) or (x was small before reducing v))

f Update(x); forall (y;N (x)) if (degree(y) � 5) Update(y;REDUCIBLE); g

Any reduction of vertex v changes the degree of all x 2 N (v) by at most one. Thus the forall{

loops from above run only for a constant number of instances. This leads to constant running time

of Update local(N (v); REDUCIBLE) as a whole. 2

Now the described algorithm:

Maximal planar embedding(graph G)

stack S; /* initially empty */

PHASE I(G;S);

PHASE II: rearrange the incidence lists of G = K

4

to be an embedding;

PHASE III(G;S);

Next the procedure PHASE I:

7

PHASE I(graph G, stack S)

vertex set REDUCIBLE;H; vertex v; integer k; edge e

1

; e

2

;

forall vertices(v,G) if (v is reducible) REDUCIBLE insert(v);

while (G number of vertices() > 4)

f

v = REDUCIBLE choose(); H = G adjacent nodes(v); REDUCIBLE remove(v);

k = G degree(v);

remove all edges e incident to v and push them on S;

remove v and push it on S;

if (k>=4) �nd vertex w 2 H with exactly 2 neighbors in H; /* according to (4.2) */

if (k==4) f let x be the only vertex in H � (N (w) [fwg);

create new edge e

1

= fw; xg; push e

1

on S; g

if (k==5) f let x and y be the two vertices in H � (N (w) [fwg);

create new edges e

1

= fw; xg and e

2

= fw; yg; push e

1

and e

2

on S; g

Update local(H;REDUCIBLE);

push k on S;

g

Lemma 5.2 PHASE I runs in time O(jV j) for every maximal planar graph G = (V;E).

Proof. The initialization takes O(jV j) time (3.1), and each of the jV j � 4 runs of the while-loop

needs constant time (4.2,5.1). 2

Now the procedure PHASE III:

PHASE III(graph G, stack S)

edge e; e

1

; e

2

; h

1

; h

2

; h

3

; h

4

; h

5

; vertex v; y; z; x

0

; x

1

; x

2

; x

3

; x

4

; integer k;

compaction COMPACT ;

forall edges(e,G) append edge e to COMPACT [G source(e)];

while (S is not empty)

f

pop k from S;

if (k==3) f pop vertex v from S; pop edges h

1

; h

2

; h

3

from S;

x

0

= G opposite(v; h

1

); y = G opposite(v; h

2

); z = G opposite(v; h

3

); g

if (k==4) f pop edge e

1

from S;

pop vertex v from S; pop edges h

1

; h

2

; h

3

; h

4

from S;

x

0

= G source(e

1

); x

2

= G target(e

1

); g

if (k==5) f pop edges e

2

and e

1

from S;

pop vertex v from S; pop edges h

1

; h

2

; h

3

; h

4

; h

5

from S;

denote by x

0

the vertex which e

1

and e

2

have in common;

y = G opposite(x

0

; e

1

); z = G opposite(x

0

; e

2

); g

do inverse reduction of v as in De�nition 5; /* including update of COMPACT */

g

Lemma 5.3 PHASE III runs in time O(jV j) for every maximal planar graph G = (V;E).

Proof. The initialization takes O(jEj) = O(jV j) time. Each of the jV j � 4 runs of the while-loop

needs constant time because the necessary information for doing the inverse reduction in constant

time (4.4) is provided by PHASE III (e.g. (the numbers of) the old edges h

1

; h

2

; h

3

[; h

4

[; h

5

]]).

2

Lemma 5.4 Maximal planar embedding() applied to any maximal planar graph G = (V;E) re-

quires O(jV j) time and space.

Proof. PHASE I and PHASE III need O(jV j) time (5.2,5.3) and PHASE II (rearranging the

K

4

) can be done in constant time. Thus Maximal planar embedding() needs O(jV j) time. In each

reduction of PHASE I there are at most 2 new edges created, and thus at most 5jV j di�erent edges

are in G. Thus the algorithm works if the arrays which realize e.g. source have size 5jV j. At most

7 edges, 1 vertex, and 1 integer are pushed on the stack during one reduction step of PHASE I.

Thus the stack has at most 9jV j entries. 2

8

Lemma 5.5 For every maximal planar graph G = (V;E) the algorithm Maximal planar embed{

ding() produces an embedding in G.

Proof. Due to G being maximal planar every reduction step of PHASE I produces again a

maximal planar graph (4.1). The �nal reduction step results in G being the K

4

. PHASE II embeds

this graph. The reconstruction of the original graph is done by inverse reductions of PHASE III,

each of them resulting in an admissible embedding of the present graph (4.3). Therefore the �nal

graph, which is G again, is an embedding. 2

6 Maximal planarity test

The embedding algorithm from the last section works well for maximal planar graphs. In this sec-

tion we show which additions to Maximal planar embedding() enable the detection of not maximal

planar graphs in linear time during the course of the embedding algorithm.

Assume that G = (V;E) is the graph to be tested for maximal planarity and, in case of maximal

planarity, the one to be embedded. There are several tests which detect not maximalplanar graphs:

1. (in PHASE I before initializing REDUCIBLE)

(a) if (jEj 6= 3jV j � 6) abort with not maximal planar;

(b) if (G contains parallel edges or self-loops) abort with not maximal planar;

2. (in PHASE I inside the reduction loop)

(a) if there are no reducible vertices left abort with not maximal planar;

(b) if there are parallel edges in INC[v] abort with not maximal planar;

(c) if there is no vertex w with exactly 2 neighbors in N (v) abort with not maximal planar;

3. (after PHASE I)

(a) if (G contains parallel edges) abort with not maximal planar;

4. (in PHASE III during inverse reductions of vertex v, case k == 3)

(a) if edges fx

0

; yg; fy; zg; fz; x

0

g do not lie on a common face w.r.t. the (actual) embedding

of G abort with not maximal planar;

5. (in PHASE III during inverse reductions of vertex v, case k 2 f3; 4; 5g)

(a) if there is an old edge e from the stack S with G oppposite(v; e) 62 fx

0

; x

1

; x

2

[; x

3

[; x

4

]]g

abort with not maximal planar.

Lemma 6.1 If the modi�ed algorithm aborts with not maximal planar, then the input graph

G = (V;E) is not maximal planar. Tests 1a and 1b require time O(jV j). The remaining tests can

be done in constant time.

Proof. Maximal planar graphs pass test 1a (2.3) and thus aborting is correct. If the number of

edges is not known from the data structure, then start an iteration over all edges and end after

having seen 3jV j � 5 edges or completing the iteration. This leads to O(jV j) running time of 1a.

Test 1b is passed by maximal planar graphs by de�nition and thus aborting here is correct,

too. Testing for self-loops and parallel edges in O(jEj) = O(jV j) time is easily done using stable

bucket sort by

SIMPLE GRAPH(graph G)

array A;B; edge e; vertex v; integer n;

forall edges(e;G) if (G source(e) == G target(e)) abort with self loop present;

n = 0; forall vertices(v;G) f n = n+ 1; A[v] = n; g

forall edges(e;G) B[e] = MIN (A[G source(e)]; A[G target(e)]);

sort the edges using bucket sort in the range f1; : : : ; ng with the mapping B;

forall edges(e;G) B[e] = MAX(A[G source(e)]; A[G target(e)]);

sort the edges using bucket sort in the range f1; : : : ; ng with the mapping B;

check whether any two consecutive edges in the list of edges of G are parallel,

if so abort with parallel edges found;

9

The two bucket sorts force parallel edges to consecutive positions in the list of edges and bucket sort

of the edges of G in the range f1; : : : ; ng needs O(jEj+ n) = O(jV j) time.

Planar graphs always possess reducible vertices (2.6) and thus aborting in test 2a is correct.

Test 2a can be performed in constant time (3.1).

Reductions applied to maximal planar graphs do not create parallel edges (4.1). Therefore

aborting in case 2b is correct. Test 2b requires constant time since jHj � 5 (parallel edges may

be created only in non-planar graphs by a reduction of a vertex v with degree(v) = 4, for the

non-existence of an edge between two large vertices is only deduced by planarity arguments).

Maximal planar graphs pass test 2c (2.7) and thus aborting is correct. Test 2c requires constant

time since jHj � 5.

Test 3a is correct for reasons similar to 2b. It is applied to G = (V;E) with jV j = 4 and

jEj = 6 and therefore it can be done in constant time.

Test 4a is passed by maximal planar graphs since the reductions of PHASE I are only un-

done in PHASE III by the corresponding inverse reductions. If adjacent edges e = fu; vg and

f = fv; wg do not lie on a common face w.r.t. the embedding represented in graph G = (V;E)

then this can be tested in constant time by either e == G cyclic incident succ(f; v) or e ==

G cyclic incident pred(f; v). In case 4a there are only 3 edges involved leading to constant time

of the whole test.

Note: The graph

G = (f1; 2; 3; 4;5; 6g;ffi; jgji 2 f1; 2; 3g; j 2 f4; 5; 6gg [ffi; (i mod 3) + 1gji 2 f1; 2; 3gg) is an

example for a non-planar graph detected by test 4a. It is a K

3;3

with 3 added edges in order to

avoid aborting at test 1a. If for instance the vertex 6 is chosen for the �rst reduction, anything

works well until test 4a, i.e. before the inverse reduction of vertex 6 takes place. The graph G�f6g

is maximal planar and thus its embedding is unique, but the edges ffi; (i mod 3)+1gji 2 f1; 2; 3gg

between the neighbors of 6 do not lie on a common face.

Test 5a is passed by maximal planar graphs for the same reason as in 4a, and since at most 5

vertices and edges are concerned 5a needs only constant time. 2

Lemma 6.2 If for an input graph G = (V;E) the modi�ed algorithm does not abort with

not maximal planar then G is maximal planar and is modi�ed to be an embedding.

Proof. After the modi�ed algorithm was run successfully G represents an embedding because:

� after PHASE II the actual graph G at that moment is an embedding of the K

4

� after each inverse reduction of PHASE III the actual graph G is an embedding (4.3)

Thus after the successful completion of PHASE III we know that G is a maximal planar graph

because we have constructed an embedding of it. 2

Lemma 6.3 The modi�ed embedding algorithm runs in linear time.

Proof. Assume �rst that we have a maximal planar input graph G = (V;E). The procedure

Maximal planar embedding() needs linear time (5.4). Tests 1a and 1b are done only once requiring

linear time and all other tests need constant time (6.1). Thus the modi�ed embedding algorithm

needs linear time in this case. Now if G = (V;E) is not maximal planar the algorithm terminates

earlier and thus needs linear time, too. 2

7 Straight Line Drawing

There are several algorithms for generating Straight Line Drawings of (maximal) planar graphs

given their embedding. In [12] a linear time quadratic space algorithm was proposed which can

easily be incorporated into PHASE II and PHASE III of our embedding algorithm. The bene�t

of doing so is that this new method requires only linear space. Further no embedding has to be

given as an input (compare [12]), because the embedding is determined simultaneously during

the course of Maximal planar embedding(). The Straight Line Drawing generated will have real-

valued x- and y-coordinates in the range [0 : : :1] for all vertices. There are other algorithms which

10

produce Straight Line Drawings with integer coordinates in the range [1; : : : ; 2jV j�4]� [1; : : : ; jV j]

for maximal planar graphs ([7],[13]). The algorithm in [13] requires only linear running time if

given an embedding of the input graph. The main advantage of those algorithms is that a lower

bound on the minimum angle between drawings of adjacent edges is guaranteed. Thus if needing

Straight Line Drawings with integer coordinates those algorithms can be applied to the embedding

generated by Maximal planar embedding().

First, the new algorithm Maximal planar Straight Line Drawing() �xes an outer face of the

embedding prior to execution of PHASE I. This is maintained until PHASE II. The following

Lemma states that this may be done with only little change to the de�nition of reducibility of a

vertex.

Lemma 7.1 The 3 vertices lying on the outer face of an embedding of a maximalplanar graphG =

(V;E) can be determined in linear time and kept not reduced during PHASE I of the algorithm.

Proof. Find any reducible vertex o

1

of G by examining all vertices. If degree(o

1

) = 3 take any

two of its neighbors as vertices o

2

and o

3

. Otherwise let o

2

be a vertex in N (o

1

) with exactly

two neighbors in N (o

1

) (2.7). Denote by o

3

any of the two vertices in N (o

1

) \ N (o

2

). In both

cases the three vertices o

1

,o

2

, and o

3

lie on a common face w.r.t. any embedding of G. We can

guarantee that none of o

1

,o

2

, and o

3

is reduced during PHASE I by simply modifying the de�nition

of reducibility. We de�ne that o

1

,o

2

, and o

3

are not reducible in the new sense. We can always

�nd a di�erent fourth reducible vertex (2.6) which is reducible in the new sense. 2

The middle of a segment between (a

x

; a

y

) and (b

x

; b

y

) is given by the point (

a

x

+b

x

2

;

a

y

+b

y

2

). The

point (

a

x

+b

x

+c

x

3

;

a

y

+b

y

+c

y

3

) is called the center of the triangle given by the points (a

x

; a

y

),(b

x

; b

y

),

and (c

x

; c

y

). Obviously the center of a triangle lies always \inside" the triangle.

After completion of PHASE II the vertices o

1

,o

2

, and o

3

get coordinates (0; 0),(0; 1), and

(

1

2

;

p

3

2

). The only other present vertex at that moment gets the center of o

1

,o

2

, and o

3

as its

coordinates.

degree 3

degree 4
degree 5

a

b

c

d

a

b

c

a

b

c

d

e

v

v

example

The only thing left to be speci�ed is how the coordinates of each vertex inserted during an

inverse reduction in PHASE III are determined. A vertex v of degree(v) = 3 gets the coordinates

of the center of its neighbors. If the vertex v has degree(v) = 4 and fa; cg is the edge being

11

removed by the inverse reduction of v, then v gets the middle of the segment between a and c as

its new coordinates. As shown in the �gure on the previous page this enables the drawing of all

edges from v to its neighbors without intersection.

The last case is the inverse reduction of a vertex v with degree(v) = 5. Here fa; cg and fa; dg

are the edges having been removed by the inverse reduction of vertex v. The dark shaded area in

the nine di�erent possible drawings contains only permissible locations of v, i.e. v can be connected

to all its neighbors by segments without intersection. For de�niteness we place v at the center of

the dark shaded triangle.

The algorithm Maximal planar Straight Line Drawing() is the algorithm Maximal planar em{

bedding() (with or without the test from the previous section) with the slightly altered de�nition

of reducibility (7.1) and the outlined determination of coordinates. The test for reducibility in

this new sense requires constant time because only 3 vertices need to be checked additionally. The

determination of the coordinates is done in constant time (even for degree(v) = 5 only 3 systems

of linear equations with 2 variables and 2 equations need to be solved in order to determine the

location of v). Thus Maximal planar Straight Line Drawing() has linear running time.

Below is an example showing the embeddings generated after PHASE II (top left) and during

PHASE III of a maximal planar graph with n = 12 vertices. This results in a �nal Straight Line

Drawing (bottom right). The reduction steps are for the degrees 4, 3, 3, 5, 4, 4, 3 and 5.

12

8 Generation of random (maximal) planar graphs

The inverse reductions performed in PHASE III of Maximal planar embedding() form the base of

a new algorithm for generating random (maximal) planar graphs. Unfortunately we cannot provide

any information on the probability distribution of the generated (maximal) planar graphs.

The algorithm Random maximal planar graph(n) is called with the number of vertices the

generated maximal planar graph is desired to have. Every edge generated during the algorithm

is put into the urn U . Since we need to know in constant time whether an edge e drawn from U

at random is present in the actual graph we maintain an array active with active[e] == 1 if, and

only if, e is present in the actual graph.

Random maximal planar graph(integer n)

graph G; urn U (5n); edge e; f; g; vertex v; w; array active; integer i; type;

Initially let G be an embedding of the K

4

; /* vertices 1,2,3,4, edges 1,2,3,4,5,6 */

forall i 2 f1; : : : ; 5ng active[i] = 0;

forall edges(e,G) f U put(e); active[e] = 1; g

while (n > 4)

f

do f e = U draw(); g while (active[e] == 0);

U put(e);

choose v randomly as one of the vertices incident to e;

if (G degree[v] == 3) choose type randomly from f3; 4g;

else choose type randomly from f3; 4; 5g;

if (type >= 4) f f = G cyclic incident succ(e; v); delete f from G; active[f] = 0; g

if (type == 5) f f = G cyclic incident succ(e; v); delete f from G; active[f] = 0; g

create a new vertex u in G;

f = e; w = v;

do

f

create a new edge g = fu;wg behind f in INC[w] and at the last position in INC[u];

active[g]=1; U put(g);

w = G opposite(w; f); f = G cyclic incident pred(f; w);

g

while (f ! = e); /* f not equal to e */

n = n� 1;

g

Lemma 8.1 Random maximal planar graph(n) requires O(n) time and space to generate a ran-

dom maximal planar graph on n vertices, which is an embedding.

Proof. Deleted edges are never inserted into G again. We charge

the time for a non-active edge drawn from U until the moment of

its deletion from G. Thus the amortized running time for choos-

ing randomly an active edge at the beginning of the main-loop is

constant. The edge deletions in case type >= 4 produce a face of

length stored in type. The do-while-loop scans the type many edges of

that face in counter-clockwise order starting with e. It requires con-

stant running time as a whole since type <= 5. Therefore one run

through the main-loop requires constant time and the main-loop is ex-

ecuted n � 4 times. The initialization needs linear time and therefore

Random maximal planar graph(n) is of linear time complexity. The

edges created inside the do-while-loop triangulate the face \above" e.

They are inserted at the correct positions in the incidence lists of the

vertices of that face. The order of edges in INC[u] corresponds to a

counter-clockwise traversal and thus the actual graph G is an embed-

ding after each run of the main-loop and at the end of the algorithm.

In each run of the main-loop at most 5 new edges are created such that

O(6 + 5(n� 4)) = O(n) space for the arrays active; source; : : : su�ces.

2

e

v

e

v

e

v

u

e

v

u

v
e

v
e

u

13

Given Random maximal planar graph(n) it is easy to generate random planar embeddings on

n vertices with m edges. Random planar graph(n,m) is called with the number of vertices and the

number of edges the graph to generate should possess.

Random planar graph(integer n,integer m)

graph G; urn U (3n� 6); edge e;

if (m > 3n� 6) abort with too many edges;

G = Random maximal planar graph(n);

forall edges(e;G) f U put(e); g

while (G number of edges() > m)

f

e = U draw();

delete edge e from G;

g

It is easy to verify that Random planar graph(n,m) requires O(n) time and space to generate

a random planar graph on n vertices and m edges (m � 3n� 6), which is an embedding.

References

[1] Auslander, L., Parter, S.V., `On embedding graphs in the plane', J. Math. and Mech., 10,

517-523 (1961).

[2] Battista, G.D., Eades, P., Tamassia, R., Tollis, I.G., `Algorithms for Drawing Graphs: an

Annotated Bibliography', /pub/gdbiblio.tex.Z from wilma.cs.brown.edu .

[3] Chrobak, M., Eppstein, D., `Planar orientations with low out-degree and compaction of adja-

cency matrices', Theor. Comp. Sci., 86, 243-266 (1991).

[4] Demoucron, G., Malgrange, Y., Pertuiset, R., `Graphes planaires: reconnaissance et construc-

tion de repr�esentations planaires topologiques', Rev. Fran�caise Rechereche Op�erationelle, 8,

33-47 (1964).

[5] Even, S., Graph Algorithms, Computer Science Press, 1979.

[6] F�ary, I., `On straight line representation of planar graphs', Acta. Sci. Math. Szeged., 229-233

(1948).

[7] Fraysseix, H. de, Pach, J., Pollack, R., `How to draw a planar graph on a grid', Combinatorica

10 (1), 41-51 (1990).

[8] Hopcroft, J., Tarjan, R.E., `E�cient planarity testing', JACM, 21 (4), 549-568 (1974).

[9] Kuratowski, G., `Sur le probl�eme des courbes gauches en topologie', Fund. Math., 15, 271-283

(1930).

[10] Lempel, A., Even, S., Cederbaum, I.,`An algorithm for planarity testing of graphs', Theory of

Graphs, Int. Symp., Rome 1966, P. Rosenstiehl, ed., Gordon and Breach, NY, 215-232 (1967).

[11] Lueker, G.S., Booth, K.S., `Testing for the consecutive ones property, interval graphs and

graph planarity using PQ-tree algorithms', J. of Comp. and Sys. Sciences, 13, 335-379 (1976).

[12] Read, R.C., `A new method for drawing a planar graph given the cyclic order of the edges at

each vertex', Congr. Numer. 56, 31-44 (1987).

[13] Schnyder, W., `Embedding Planar Graphs on the Grid', Proc. ACM-SIAM Symp. on Discrete

Algorithms, 138-148 (1990).

[14] Wagner, K., `Bemerkungen zum Vierfarbenproblem', Jahresber. Deutsche Math.-Verein. 46,

26-32 (1936).

[15] Whitney, H., `Planar graphs', Fund. Math., 21, 73-84 (1933).

14

