Planar embedding of hamiltonian
graphs via efficient bipartation of
circle graphs

CHRISTOPH HUNDACK
Forschungsinstitut fir Diskrete Mathematik
Universitat Bonn

HERMANN STAMM-WILBRANDT
Institut fur Informatik 111
Universitat Bonn

June 1994

Abstract

We describe an easy way to check whether a hamiltonian graph
of order n with a given hamiltonian cycle is planar. This is done by
solving the bipartation problem for the corresponding circle graph. If
the graph is planar an embedding is constructed. The algorithm runs
in O(n) time and space.

1 Introduction

From an abstract point of view planarity testing in linear time has been solved
by the seminal paper of J.E. HOPCROFT, R.E. TARJAN [4]. However many
technical questions are answered in a rather unsatisfactory manner (compare
[1]). Therefore simple planarity testing/embedding algorithms are of interest
for their own, even if they cover only restricted classes of graphs (eg [7]). We
describe an easy way for planarity testing/embedding of any graph of order

n containing a hamiltonian cycle if this hamiltonian cycle is given. As this
testing is equivalent to deciding whether the corresponding circle graph is
bipartite we substitute the latter for the former.

The algorithm first constructs a representation of the circle graph wrt the
input graph and its hamiltonian cycle. From the circle graph it tries to derive
a so-called conflict-graph inheriting all necessary information on crossing of
chords. This graph has size O(n) even if the circle graph has size O(n?). If
the conflict-graph cannot be constructed or if the conflict-graph is not bipar-
tite then the circle graph is not bipartite. If the conflict-graph is bipartite
then the same applies to the circle graph. Any bipartation of the circle graph
then results in a feasible embedding of the input graph. The algorithm re-
quires O(n) time and space.

Conflict-graphs have been introduced in a more general way by G.J. FISHER,
O. WING [3]. Their algorithm for the generation of the conflict-graph, differ-
ent to the one presented, runs in O(r?) time requiring O(n?) space. Similar
problems have been solved by the planarity algorithms described in [4], [6].
Bipartation of circle graphs is extended to circle hypergraphs in [5]. In this
form it is a major tool for the simple and efficient planarity testing and
embedding algorithm to be published in a forthcoming paper.

2 Basic definitions and data structures

2.1 Definitions and lemmas

The terminology used for graphs in this paper follows that of S. EVEN [2].
Let GG be a graph. The set of vertices of ¢ is denoted by V((G'), the set of
edges of G by E((G). The order of G is |V (G)], the size of G is |E(G)]. For
each v € V(@) denote by INC|[v] the incidence list of v. We consider an
embedding of a planar graph G to be an ordering of each incidence list of G,
such that for each v € V() the order of the edges in INC[v] corresponds
to a counterclockwise traversal of the edges in a fixed embedding of G in the
plane. A graph H is called a (weak) subgraph of graph G, if V(H) C V(G)
and F(H) C E(G).

Next a lemma from [2] without proof:

Lemma 1 Let GG be a simple planar graph with [V(G)| > 2. Then the
following holds: |E(G)| < 3|V(G)| — 6. O

A chord of a circle CO’ is a straight line segment connecting two points on
CO’. Let C'H be a set of (different) chords of circle é’ The so-called circle
graph C wrt ¢ and C'H is defined by V(C)=CH and E(C') = {{ch,ch'} €

CH x CH | chand ch/ intersect (cross) inside C }.
Denote by ¢ any endpoint of a chord of C'H. The chord ¢h € C' H possesses

a first/second endpoint wrt the counterclockwise order they appear on (¢
beginning with ¢. Define the length of a chord ch to be the length of the
arc from ch’s first endpoint to its second wrt the counterclockwise order on

C'. Then number the chords arbitrarily by 1,...,|C H|. Starting with an

empty list L traverse the endpoints of the chords on CO’ in counterclockwise
order beginning with ¢. For each endpoint p visited this way collect all
chords having p as their second endpoint sorted by increasing length and
append them to L; then collect all chords having p as their first endpoint
sorted by decreasing length and append them to L, too. After visiting all
endpoints list L has size 2|C H|. Now replace each chord ch € C'H (being
numbered by) by list {—¢} at ch’s first occurrence in L and by {i} at its
second occurrence. This results in a list of 2|C H| single element lists, called

a standard representation of the circle graph €' wrt é’ and C'H.
A standard representation of the circle graph €' in
the example is given by:

L= {{_3}7 {_4}7 {_7}7 {_2}7 {_1}7 {_8}7
{7}7 {4}7 {3}7 {_5}7 {_6}7 {8}7 {1}7 {2}7 {6}7 {5}}

Note that a standard representation may be viewed as a well-bracketed
sequence of different pairs of brackets. Now we examine an important prop-
erty of standard representations of circle graphs.

Lemma 2 Denote by L a standard representation of the circle graph €' wrt

circle é’ and set of chords C'H. Denote by N[ch] the number of a chord
ch € CH in L. Now two chords c¢h and c¢h’ of C'H cross (ch being added to
L before c¢h’ in the construction above), if and only if, the following pattern
appears in L:

(o A=N[eh]}, ... {=N[ehT}, {N[ch]}, ..., {N[eh]},...}.

(This is called a crossing configuration of ch and ch'.)

Proof: We prove the lemma by examining all possible configurations of
chords ¢h and ch’ in C. First look at the case that ¢h and c¢h’ do not have
endpoints in common. If they do not cross then L contains either (a) the
pattern

(o A=N[eh]}, ... {N[eh]}, I=N[eh]}, {N[eh']},..)

or (b) the pattern

{...,{=NlJeh]}, ..., {=NI[ck]},... ., {N[ch']},... . {N][ch]},...}.
Otherwise (c) L looks like
S {=N][ch]} —Nlch/] b {N[eR]})

QO

(©

Now if two chords have one endp01nt in common, they do not cross due
to the definition of a circle graph. We have to show that in this case no
crossing configuration is generated during the construction of a standard
representation. In case the chords have (d) their first endpoints or (e) their
second endpoints in common, the ordering by length prevents a crossing
configuration. If (f) the second endpoint of chord ch is the first endpoint of
ch’ | then L contains the pattern

(o A=N[eh]}, ... {N[eh]}, I=N[eh]}, {N[eh']},..)

because second endpoints are appended first.

0 O Q

(d)
Since all possible cases have been Verlﬁed the lemma is proven

2.2 Data structures

A (doubly linked) list L is a sequence of items. For each item «t of L its
content is denoted by L[it]; L[et] is also called an element of L. The number
of items in L is called the size of L and is denoted by |L|. If L = ¢, ie L
has size zero, then it is called the empty list. The predecessor of the first
item of L and the successor of the last item of L are denoted by undef. The
type of an element is arbitrary, eg it may be a list itself. For simplicity list

L = ty,... il is also denoted by {L[itq],..., L[itg]} with {} in case L = e.
Appending list Y = at},... it} to list X = 4ty,...,t; results in ¥ = ¢ and
X = aty,... it 0t ... ath. This model allows the following constant time

operations on list L:
o get the content L[it] of an item ¢t of L;
o get the first/last item of L;
o get the successor/predecessor of a given item in L;
o get the size of L;
e append/delete elements or items to/from L;
e append list L' to L.

Now we describe the implementation of datatype graph. We represent the
vertices and edges of a graph by positive numbers. Each vertex has infor-
mation on its predecessor and successor in the doubly linked list of vertices
of the graph. This allows iteration on the vertices as in eg the statement
forall_vertices(v,). Each vertex v additionally knows about its (doubly
linked) incidence list ITNC[v]. Each edge e = {u,v} knows about its in-
cident vertices G_source(e) = u and G_target(e) = v without the usual
directed interpretation. Additionally each edge ¢ = {u,v} knows about
its positions in INC[u] and INC[v] and its predecessor and successor in
the doubly linked list of edges of the graph (eg for iteration purposes as in
forall_incident edges(e,v) and in forall_edges(e,)). The identification of
vertices/edges with numbers allows in an easy way to associate information
with them by using ordinary arrays', here called vertex_ array/edge_ array.
Newly created vertices and edges get the lowest “unused” number available
in each case starting with 1. The creation of a new edge e between u and
w allows to specify the positions of e in INC[u] and INCw]; the default

I'This is exactly the way in which source, target, ... can be realized.

position is at the ends of the lists. The non-existence of a vertex/edge as a
result of some function is indicated by value 0. The cyclic successor/cyclic
predecessor of an edge ¢ = {u, v}, eg in INC|v], is either given by its succes-
sor/predecessor (see above) if this is not 0, or it is given by the first/last edge
in INCTv]. The operation GG_move_edge(e, v, f,dir) allows to move edge e of
INC[v] to the position before/after f in INC[v] depending on dir. It can
be implemented as constant time operation and is the main operation for
modifying (planar) graphs to embeddings.

3 Informal description of the algorithm

Let GG be the input graph on n vertices and m edges. We number the edges
not lying on the hamiltonian cycle HC from 1 to m — n. Via two bucket
sorts we receive incidence lists sorted descendingly according to the “cyclic
length” of the edges. The incidence lists are concatenated wrt their order
to one single list. We change the entries of this list in the following way:
Replace each entry {u,v} € E(G) — HC numbered by i by {—i} at its
first appearance in the list and by {4+:} at its second. This list L is now a
standard representation of a circle graph C', whose bipartiteness is equivalent
to (G being planar.

Now the main procedure of the algorithm (testing whether C' is bipartite)
is to traverse the generated list and to detect dependencies between the
chords (Section 4). During the course of this procedure the so-called conflict
graph C'on flict is built up. In this graph the vertices represent the chords,
the edges are the detected conflicts, ie chords of V(C') which have to be in
different classes of a bipartation. Non-bipartiteness of €' is either tracked
down during the main procedure or if Con flict is not bipartite.

It C' is not bipartite, then i is not planar. If C' is bipartite, then a two-
colouring of C' is derived from a bipartation of Con flict. Maintaining the
order given in L the non-cycle edges of G corresponding to chords in one
colour class of C' are placed on one side of the hamiltonian cycle while the
chords corresponding to the second class are placed on the other side. This
leads to a feasible embedding of the graph G, thereby proved to be planar.

4 Circle Graph Bipartation

In order to determine a feasible bipartation of the circle graph C' we have
to know which chords of C' cross and therefore must be in different par-
tition classes. Obviously we cannot examine all conflicts as there might
be O(|V(C)]?) of them. Thus we have to find a linear number of conflicts
which inherit all partition information on the chords as well as possible non-
bipartiteness. For this purpose the standard representation of (' is altered
by deleting chords and by concatenating sublists. At the same time the con-
flict graph C'on flict is built up. Note that sublists containing more than one
element are used to represent that its chords have to be in the same partition
class. The necessary information is retrieved by Generate Conflict_Graph.
Generate_Conflict_Graph(list_of_list_of_integer L)
item actual,search,auzx; graph Con flict;
initialize Con flict by E(Conflict) = () and
V(Conflict) = {[—i,¢] |1 € {1,...,|L]|/2} };
let actual denote the first item of L;
1 while (L is not empty)
{
2 while (last entry of Lactual] is negative)
{ set actual to successor of actual in L; }
let ¢ be the single (positive) element of L[actuall;
set search to predecessor of actual in L;

3 while ((search # undef) and (last entry j of L[search] # —1))
{
add new edge {[—1,1],[—7,7]} to Conflict;
if (successor aux of search in L # actual)
{ append list L[auz] to L[search]; remove auz from L; }
/* now the successor of search in L is actual again */

set search to predecessor of search in L;
1
4 if (search == undef) return (false, Conflict);
set actual to successor of actual in L;
remove list {¢} from L and (last) element —¢ from L[search];
if (L[search] is the empty list) remove search from L;

}

return (true, Con flict);

Circle_Graph_Is_Bipartite uses this function in order to decide whether circle
graph C' given by standard representation L is bipartite.

Circle_Graph_Is_Bipartite(list_of_list_of_integer L)
bool ok; graph Con flict; list_of _chord P;
(ok,Conflict) = Generate_Conflict_Graph(L);
if (ok == false) return (false,{});
if (Conflict is not bipartite) return (false, {});
denote by P C V(Conflict) one partition class

of a bipartation of C'on flict;
return (true, P);

Now we prove the correctness of Circle_Graph_Is_Bipartite.

Lemma 3 If function Generate_Conflict_Graph(L) returns false, then the cir-
cle graph ' with standard representation L is not bipartite.

Proof: In a standard representation L of (' —¢ is always contained in a
list preceding {¢} for all ¢ € {1,...,|L|/2}. This property remains valid
during the course of Generate_Conflict_Graph. While searching for the negative
number —i corresponding to a positive one ¢ (3), all negative integers, ie all
detected conflicts (Lemma 2), are noted by adding an edge to the graph
Conflict. All lists between the list containing —¢ and {¢} are concatenated
resulting in one single list. For any feasible bipartation of C' the chords
[—7,7] corresponding to the elements —j of this list have to be members of
the same partition class (not containing [—¢,7]). No other conflicts between
these chords in €' are possible without violating the bipartiteness of C.

The only reason for not finding —¢ (4), is that it is “hidden” in one of the
lists preceding {¢}, ie —i is not the last element of its list. Therefore in the
list containing —z each —j succeeding —¢ indicates a conflict between chord
[—7,7] and chord [—1,¢]. This shows that (' is not bipartite. O

The example illustrates the problem mentioned in the proof above. Non-
bipartiteness of C' is detected since —2 is “hidden” in {—2, —3}.

s 2,2
) ——{—3,3{ [-11]

3 1 C=K -3.3] 2.2

) [
y [

Lemma 4 If the generated graph Conflict is not bipartite then the circle
graph C' is not bipartite.

Proof: Conflict is isomorphic to a subgraph of C. O

Now an example for a non-bipartite graph C' (since C'on flict is not bipartite):

[-4,4]--[-2,2]
-1-3-4 124 -52 35
-3 24 -52 35
-4
/[—1,1]
Z [-2,21-[-55] [-3,3]--[-5,5] [-4.4] [-3.3]
-3 -2 -52 35 4@ [-2,2] [-5.5]

-3 -5 35
Lemma 5 If Circle_Graph_Is_Bipartite(L) returns true, then circle graph C
with standard representation L is bipartite.

Proof: Colour the chords of circle graph " according to the generated par-
tition of the corresponding vertices of C'on flict. Assume this two-colouring
is not feasible. Then at least two crossing chords have been coloured the
same, ie the corresponding vertices in C'on flict are not connected by an odd
path.

The first time a pair —z,¢ in Generate_Conflict_Graph is removed an edge in
Conflict is inserted between the vertex [—i,¢] and the ones representing the
negative integers between —i and i. (Therefore the corresponding vertices
are pairwise connected by paths of length 2.) Then these integers are joined
in one list. Each new removal of a pair —j and j leads to conflict edges
between the vertex [—j, j] and all representatives of the last elements of lists
in between. These representatives have already been connected by paths of
even length to all representatives of preceding list elements. This results in
odd paths between the vertex [—j, j] and every vertex representing an element
of a list between —j and j. Therefore all conflicts (ie edges) between chords
in C' are detected and noted either by edges or by odd paths in Con flict,
contrary to the assumption. O

Ak x k grid graph illustrates that the number of edges in Conflict is
“linear” although the number of conflicts is “quadratic”. The 3 x 3 grid

10

graph of the example shows a complete run of the algorithm giving a bipar-
tation {[_27 2]7 [_37 3]7 [_57 5]} U {[_17 1 ’ [_47 4]7 [_67 6]}

ah
1

-3
-3,
-3,

,__‘_‘
Www
PR

X =]

1
-1~

’

2

6
\5 -3-1-4-6 3-5-2 6 41 2 5
-1 5 -2 6 41 25
3 -4
3
c\ /
\./—6

c=K -5 S
33
_1 _4

[-2,2

[-4,41--[-2,2] T a4 a3
[-1.1]--[-2.,2] '
-1 5 4 1 2 5 1 51 2 5 @

4 -2 ° 5 2 5

5 68— 5g

Corollary 6 Circle_Graph_ls_Bipartite(L) returns true, if and only if, the cir-
cle graph ' with standard representation L is bipartite. a

Now we show that Generate_Conflict_Graph(L) runs in time linear in the
size of L. The order of Conflict is equal to the order of C'. Within while-
loop (2) every integer is visited once. The total running time of while-loop
(3) is linear in the number of edges inserted in Con flict as all operations in
while-loop (3) require only constant time and due to the removal of {¢} and
—2 no edge is added twice. What remains to be shown is that the number of

edges of Conflict is linear in the size of L (and |V(Conflict)]).
Lemma 7 |E(Conflict)] < 2|V (Conflict)).

Proof: Let n = |V(Conflict)| be the number of chords of the circle graph.
Denote by ¢; the number of connected components of Con flict and by e;
the number of edges created during the i-th step of the main loop (1) of
Generate_Conflict_Graph. Initially we have ¢g = n and after the completion of
Generate_Conflict_Graph ¢, > 1. In each step at most one of the edges created
newly connects vertices of the same component. All other edges decrease the

number of connected components, each by one. Therefore ¢; < ¢;_1 —¢; + 1
for 1 <¢ <n. Now we bound e = |E(Conflict)| from above by

e:Zei§Z(Ci_1—ci—|—1):n—|—co—cn§n—|—n—1<2n. O
=1 =1

Corollary 8 Circle_Graph_Is_Bipartite(L) runs in time linear in |L|. O

11

5 Planarity testing/embedding of hamilto-
nian graphs

5.1 Introduction

For the rest of this section we assume that the hamiltonian input graph
G with V(G) = {1,2,...,n} is given via incidence lists. Its vertices are
numbered ascendingly from 1 to n according to their appearances in the
given hamiltonian cycle HC'.

We also assume that |E(G)| = O(|V(G)]), since this is a necessary con-
dition for the planarity of a graph (Lemma 1). This is checked at the very
beginning of function Planar_Hamilton_Embedding to be introduced later.

We consider HC' as “circle” (' and the edges of K(G) — HC as set of

“chords” C'H. Let C be the circle graph wrt to é’ and C'H. We call C' the
circle graph wrt to G and HC'\, too. Denote for {u,v} € F(G) — HC by
d? = (v —u) mod |V(G)| the distance from u to v in G.

The next lemma shows the equivalence of the planarity of ' and the
bipartiteness of C.

Lemma 9 The graph G with hamiltonian cycle HC' is planar, if and only
if, the circle graph C' wrt G and HC' is bipartite.

Proof: (if) Consider an embedding of HC being numbered counterclock-
wise. Since C' is bipartite its chords can be partitioned into two crossing-free
classes. Denote the corresponding sets of edges by A and B. Now sort all
incidence lists of GG resulting in

INC[v] = {{v,1+ (v mod [V(G))},{v,u1},...,{v,us},

{v,14 ((v—2) mod [V(G))},{v,wi},....{v,wi}}

with Vi e {1,...,k} : {v,u;} € A, d¥ < d¥+ and Vj € {1,...,1} : {v,w;} €
B,dy,” > d,”*". This results in an embedding of ¢ thus proved to be planar.

(only if) Consider the embedding of G given. The chords corresponding
to the edges of F(G)— HC inside HC do not cross. The same applies to the
chords corresponding to the edges of E(G) — HC outside HC. Thus both
sets of chords are independent sets of (' whose union is C'H. Therefore C' is
bipartite. a

12

5.2 Algorithm

First we describe the procedure Preprocessing, which takes G as input. It
returns a standard representation L of the circle graph C' wrt G and HC
and the mapping M of chords of C to their corresponding edges from HC =
E(G) - HC.

Preprocessing(graph G)

list L; edge_array N; list_of_edge HC'; array_of_edge M;
70 = {e = {u, 0} € B(G) | (v — u) mod [V(G)]) & {1, [V(G)] — 1}}
number in N the edges of HC by {1,...,|E(G)|— |[V(G)|};
forall ¢ € HC: M[Nle]] = ¢;
UL = {(d2, u,~N[e]), (d% v, N[e]) | ¢ = {u,0} € TTC,u < v}

v b

sort L decreasingly using stable bucket sort in the range

[2,...,|[V(G)| = 2] by the tupels first entries;
3 sort L increasingly using stable bucket sort in the range
[1,...,|V(G)]] by the tupels second entries;

replace each tupel (d,u,¢) of L by the the list {¢} resulting
in L being a list_of list_of_integer;

return (L, M);

Lemma 10 The list L returned by function Preprocessing(() is a standard

representation of the circle graph € wrt G and HC. Preprocessing(() runs
in time O(|V (G)]).

Proof: Each number i € {1,...,|E(G)| — |[V(G)|} occurs exactly once as
{—i} and once as {¢} in L (1), and |L| = 2(|E(G)| — |[V(G)]). {—t} occurs
before {¢} in L because of (3) and v < v in (1). Consider HC as a circle
numbered counterclockwise. The first stable bucket sort (2) realizes implic-
itly the order of chords with common endpoint according to their distance.
The second stable bucket_sort (3) moves chords with common endpoint to
successive positions in L preserving the order of (2) for single vertices. There-
fore the generated list L is a standard representation of the circle graph ¢
wrt GG and HC (¢ corresponding to vertex 1).

Since |L| < 2|E(G)| and the mapping range of the two bucket sorts is also
linear in |V ()|, Preprocessing((+) runs in time O(|V(G')]) due to the remarks
on data structures in Section 2 and the assumption made at the beginning
of this section. O

13

Assume that the circle graph C' wrt G and HC' is bipartite. We describe the
procedure Postprocessing, which modifies G to be an embedding.

Postprocessing(graph ¢ , list_of_list_of_integer L,
array-of_edge M, list_of_chord P)
array _of_bool inside;
forall ¢ € {1,...,|L|/2}: inside[i] = true;
forall elements [—¢,1] of P: inside[i] = false;
1 forall {j} in L
{
e=M[|j|] = {u,w} with u < w;
if (7 <0) v=u; else v=uw;

if (insidel|j|] == true)
G_move_edge(e,v,{v,1 + (v mod |V (G)|)},after)
else

G_move_edge(e,v,{v,1 + (v mod |V (G)])}, be fore);
1

Lemma 11 Function Postprocessing modifies G to be an embedding. It

requires O(|V(G)]) time.

Proof: Within L the edges having one endpoint v in common are sorted
decreasingly according to d\. This order is preserved within the list of edges
to be moved before the hamiltonian cycle edge {v,1+ (v mod |[V(G)|)}. It
is reversed within the list of edges moved after the hamiltonian cycle edge
{v,1 4+ (v mod |V(G)])}. The second hamiltonian cycle edge {v,1 + ((v —
2) mod |V(G)])} is not moved, ie its position is between the edge of largest
distance placed after {v, 14 (v mod |V(G)|)} and the edge of largest distance
placed before {v, 1+ (v mod |V(G)|)}. Therefore the order generated within
the incidence lists INCv] is the same as the one in the proof of Lemma 9
(if-part).

The running time of (1) is linear in |L|/2, ie in |V(G)|: All operations within
loop (1) can be done in constant time as stated in Section 2. O

14

Now we present the main procedure, Planar_Hamilton_Embedding, putting
the developed things together. It returns true if (G is planar and embeds GG
in this case. Otherwise it returns false.

Planar_Hamilton_Embedding(graph)

list_of_list_of integer L; array_of_edge M; list_of_integer P; bool bip;
if (|E(G)| > 3|V(G)| —6) return false;

(L, M) = Preprocessing(();

(bip, P) = Circle_Graph_Is_Bipartite(L);

if (bip == false)

return false;

W N = O

else

{
4 Postprocessing(G, L, M, P);

return Irue;

!

Corollary 12 Planar_Hamilton_Embedding((7) returns true, if and only if, ¢
is planar. If GG is planar then it is modified to be an embedding.

Proof: Lemma 1 shows that aborting with false in (0) is correct. Lemma
10 ensures that Preprocessing((#) returns a standard representation L of the
circle graph €' wrt G and HC. By Lemma 9 (' is bipartite, if and only if,
(¢ is planar. Thus aborting with false in (3) is correct. By Lemma 11 G is

modified to be an embedding if being planar (4). This completes the proof.
O

Lemma 13 Planar_Hamilton_Embedding((') runs in time and space O(|V (G)]).

Proof: No part of Planar_Hamilton_Embedding or the other functions works
on uninitialized data. Therefore showing running time O(|V (G)|) implies the
use of only O(|V(G)]) space.

The first test (0) can be done in time O(|V(()]) by visiting edges one by
one and aborting if having seen 3|V (G)| — 5 different edges. (1), (2) and (4)
have O(|V(()]) running time by Lemma 10, Corollary 8, and Lemma 11. O

15

References

1]

Di Battista, G., Eades, P., Tamassia, R., Tollis, [.G.
Algorithms for drawing graphs: an annotated bibliography
November 1993, available via anonymous ftp from wilma.cs.brown.edu,

file /pub/gdbiblio.tex.Z

Even, S.
Graph Algorithms
Computer Science Press, Rockville, MD, 1979

Fischer, G.J.,Wing, O.

Computer recognition and extraction of planar graphs from the inci-
dence matrix

IEEE Transactions on circuit theory, ct-13(2) 1966, 154-163

Hopcroft, J.E., Tarjan, R.E.

Efficient planarity testing

Journal of the Association for Computing Machinery, 21(4) 1974, 549-
568

Hundack, C., Stamm-Wilbrandt, H.

Efficient bipartation of circle hypergraphs

Report TAI-TR-94-xx, Institut fir Informatik III, Universitat Bonn,
1994

Mehlhorn, K.

Graph algorithms and NP-completeness, Data structures and algorithms
vol.2

Springer-Verlag, Berlin, 1984

Stamm-Wilbrandt, H.

A simple linear time algorithm for embedding maximal planar graphs
Report TAI-TR-93-10, Institut fir Informatik III, Universitat Bonn,
1993

