
Planar embedding of hamiltoniangraphs via e�cient bipartation ofcircle graphsChristoph HundackForschungsinstitut f�ur Diskrete MathematikUniversit�at BonnHermann Stamm-WilbrandtInstitut f�ur Informatik IIIUniversit�at BonnJune 1994AbstractWe describe an easy way to check whether a hamiltonian graphof order n with a given hamiltonian cycle is planar. This is done bysolving the bipartation problem for the corresponding circle graph. Ifthe graph is planar an embedding is constructed. The algorithm runsin O(n) time and space.1 IntroductionFrom an abstract point of view planarity testing in linear time has been solvedby the seminal paper of J.E. Hopcroft, R.E. Tarjan [4]. However manytechnical questions are answered in a rather unsatisfactory manner (compare[1]). Therefore simple planarity testing/embedding algorithms are of interestfor their own, even if they cover only restricted classes of graphs (eg [7]). Wedescribe an easy way for planarity testing/embedding of any graph of order1

2n containing a hamiltonian cycle if this hamiltonian cycle is given. As thistesting is equivalent to deciding whether the corresponding circle graph isbipartite we substitute the latter for the former.The algorithm �rst constructs a representation of the circle graph wrt theinput graph and its hamiltonian cycle. From the circle graph it tries to derivea so-called conict-graph inheriting all necessary information on crossing ofchords. This graph has size O(n) even if the circle graph has size O(n2). Ifthe conict-graph cannot be constructed or if the conict-graph is not bipar-tite then the circle graph is not bipartite. If the conict-graph is bipartitethen the same applies to the circle graph. Any bipartation of the circle graphthen results in a feasible embedding of the input graph. The algorithm re-quires O(n) time and space.Conict-graphs have been introduced in a more general way byG.J. Fisher,O. Wing [3]. Their algorithm for the generation of the conict-graph, di�er-ent to the one presented, runs in O(n3) time requiring O(n2) space. Similarproblems have been solved by the planarity algorithms described in [4], [6].Bipartation of circle graphs is extended to circle hypergraphs in [5]. In thisform it is a major tool for the simple and e�cient planarity testing andembedding algorithm to be published in a forthcoming paper.2 Basic de�nitions and data structures2.1 De�nitions and lemmasThe terminology used for graphs in this paper follows that of S. Even [2].Let G be a graph. The set of vertices of G is denoted by V (G), the set ofedges of G by E(G). The order of G is jV (G)j, the size of G is jE(G)j. Foreach v 2 V (G) denote by INC[v] the incidence list of v. We consider anembedding of a planar graph G to be an ordering of each incidence list of G,such that for each v 2 V (G) the order of the edges in INC[v] correspondsto a counterclockwise traversal of the edges in a �xed embedding of G in theplane. A graph H is called a (weak) subgraph of graph G, if V (H) � V (G)and E(H) � E(G).Next a lemma from [2] without proof:Lemma 1 Let G be a simple planar graph with jV (G)j > 2. Then thefollowing holds: jE(G)j � 3jV (G)j � 6: 2

3A chord of a circle �C is a straight line segment connecting two points on�C. Let CH be a set of (di�erent) chords of circle �C. The so-called circlegraph C wrt �C and CH is de�ned by V (C) = CH and E(C) = f fch; ch0g 2CH � CH j ch and ch0 intersect (cross) inside �C g.Denote by c any endpoint of a chord of CH. The chord ch 2 CH possessesa �rst/second endpoint wrt the counterclockwise order they appear on �Cbeginning with c. De�ne the length of a chord ch to be the length of thearc from ch's �rst endpoint to its second wrt the counterclockwise order on�C. Then number the chords arbitrarily by 1; : : : ; jCHj. Starting with anempty list L traverse the endpoints of the chords on �C in counterclockwiseorder beginning with c. For each endpoint p visited this way collect allchords having p as their second endpoint sorted by increasing length andappend them to L; then collect all chords having p as their �rst endpointsorted by decreasing length and append them to L, too. After visiting allendpoints list L has size 2jCHj. Now replace each chord ch 2 CH (beingnumbered by i) by list f�ig at ch's �rst occurrence in L and by fig at itssecond occurrence. This results in a list of 2jCHj single element lists, calleda standard representation of the circle graph C wrt �C and CH.A standard representation of the circle graph C inthe example is given by:L = ff�3g; f�4g; f�7g; f�2g; f�1g; f�8g;f7g; f4g; f3g; f�5g; f�6g; f8g; f1g; f2g; f6g; f5gg 1

2

3
4 5 6

78 C

cNote that a standard representation may be viewed as a well-bracketedsequence of di�erent pairs of brackets. Now we examine an important prop-erty of standard representations of circle graphs.Lemma 2 Denote by L a standard representation of the circle graph C wrtcircle �C and set of chords CH. Denote by N [ch] the number of a chordch 2 CH in L. Now two chords ch and ch0 of CH cross (ch being added toL before ch0 in the construction above), if and only if, the following patternappears in L:f: : : ; f�N [ch]g; : : : ; f�N [ch0]g; : : : ; fN [ch]g; : : : ; fN [ch0]g; : : :g:(This is called a crossing con�guration of ch and ch0.)

4Proof: We prove the lemma by examining all possible con�gurations ofchords ch and ch0 in C. First look at the case that ch and ch0 do not haveendpoints in common. If they do not cross then L contains either (a) thepatternf: : : ; f�N [ch]g; : : : ; fN [ch]g; : : : ; f�N [ch0]g; : : : ; fN [ch0]g; : : :gor (b) the patternf: : : ; f�N [ch]g; : : : ; f�N [ch0]g; : : : ; fN [ch0]g; : : : ; fN [ch]g; : : :g:Otherwise (c) L looks likef: : : ; f�N [ch]g; : : : ; f�N [ch0]g; : : : ; fN [ch]g; : : : ; fN [ch0]g; : : :g:
(a)

C

ch

ch’

c

C

ch

ch’

(b)

c

C

ch

ch’

(c)

cNow if two chords have one endpoint in common, they do not cross dueto the de�nition of a circle graph. We have to show that in this case nocrossing con�guration is generated during the construction of a standardrepresentation. In case the chords have (d) their �rst endpoints or (e) theirsecond endpoints in common, the ordering by length prevents a crossingcon�guration. If (f) the second endpoint of chord ch is the �rst endpoint ofch0 , then L contains the patternf: : : ; f�N [ch]g; : : : ; fN [ch]g; : : : ; f�N [ch0]g; : : : ; fN [ch0]g; : : :gbecause second endpoints are appended �rst.
C

ch

ch’

(d)

c

C

ch

ch’

(e)

c

C

ch

ch’

(f)

cSince all possible cases have been veri�ed the lemma is proven. 2

52.2 Data structuresA (doubly linked) list L is a sequence of items. For each item it of L itscontent is denoted by L[it]; L[it] is also called an element of L. The numberof items in L is called the size of L and is denoted by jLj. If L = �, ie Lhas size zero, then it is called the empty list. The predecessor of the �rstitem of L and the successor of the last item of L are denoted by undef . Thetype of an element is arbitrary, eg it may be a list itself. For simplicity listL = it1; : : : ; itk is also denoted by fL[it1]; : : : ; L[itk]g with fg in case L = �.Appending list Y = it01; : : : ; it0j to list X = it1; : : : ; iti results in Y = � andX = it1; : : : ; iti; it01; : : : ; it0j. This model allows the following constant timeoperations on list L:� get the content L[it] of an item it of L;� get the �rst/last item of L;� get the successor/predecessor of a given item in L;� get the size of L;� append/delete elements or items to/from L;� append list L0 to L.Now we describe the implementation of datatype graph. We represent thevertices and edges of a graph by positive numbers. Each vertex has infor-mation on its predecessor and successor in the doubly linked list of verticesof the graph. This allows iteration on the vertices as in eg the statementforall vertices(v;G). Each vertex v additionally knows about its (doublylinked) incidence list INC[v]. Each edge e = fu; vg knows about its in-cident vertices G source(e) = u and G target(e) = v without the usualdirected interpretation. Additionally each edge e = fu; vg knows aboutits positions in INC[u] and INC[v] and its predecessor and successor inthe doubly linked list of edges of the graph (eg for iteration purposes as inforall incident edges(e; v) and in forall edges(e;G)). The identi�cation ofvertices/edges with numbers allows in an easy way to associate informationwith them by using ordinary arrays1, here called vertex array/edge array.Newly created vertices and edges get the lowest \unused" number availablein each case starting with 1. The creation of a new edge e between u andw allows to specify the positions of e in INC[u] and INC[w]; the default1This is exactly the way in which source, target, ... can be realized.

6position is at the ends of the lists. The non-existence of a vertex/edge as aresult of some function is indicated by value 0. The cyclic successor/cyclicpredecessor of an edge e = fu; vg, eg in INC[v], is either given by its succes-sor/predecessor (see above) if this is not 0, or it is given by the �rst/last edgein INC[v]. The operation G move edge(e; v; f; dir) allows to move edge e ofINC[v] to the position before/after f in INC[v] depending on dir. It canbe implemented as constant time operation and is the main operation formodifying (planar) graphs to embeddings.3 Informal description of the algorithmLet G be the input graph on n vertices and m edges. We number the edgesnot lying on the hamiltonian cycle HC from 1 to m � n. Via two bucketsorts we receive incidence lists sorted descendingly according to the \cycliclength" of the edges. The incidence lists are concatenated wrt their orderto one single list. We change the entries of this list in the following way:Replace each entry fu; vg 2 E(G) � HC numbered by i by f�ig at its�rst appearance in the list and by f+ig at its second. This list L is now astandard representation of a circle graph C, whose bipartiteness is equivalentto G being planar.Now the main procedure of the algorithm (testing whether C is bipartite)is to traverse the generated list and to detect dependencies between thechords (Section 4). During the course of this procedure the so-called conictgraph Conflict is built up. In this graph the vertices represent the chords,the edges are the detected conicts, ie chords of V (C) which have to be indi�erent classes of a bipartation. Non-bipartiteness of C is either trackeddown during the main procedure or if Conflict is not bipartite.If C is not bipartite, then G is not planar. If C is bipartite, then a two-colouring of C is derived from a bipartation of Conflict. Maintaining theorder given in L the non-cycle edges of G corresponding to chords in onecolour class of C are placed on one side of the hamiltonian cycle while thechords corresponding to the second class are placed on the other side. Thisleads to a feasible embedding of the graph G, thereby proved to be planar.

74 Circle Graph BipartationIn order to determine a feasible bipartation of the circle graph C we haveto know which chords of C cross and therefore must be in di�erent par-tition classes. Obviously we cannot examine all conicts as there mightbe O(jV (C)j2) of them. Thus we have to �nd a linear number of conictswhich inherit all partition information on the chords as well as possible non-bipartiteness. For this purpose the standard representation of C is alteredby deleting chords and by concatenating sublists. At the same time the con-ict graph Conflict is built up. Note that sublists containing more than oneelement are used to represent that its chords have to be in the same partitionclass. The necessary information is retrieved by Generate Conict Graph.Generate Conict Graph(list of list of integer L)item actual,search,aux; graph Conflict;initialize Conflict by E(Conflict) = ; andV (Conflict) = f[�i; i] j i 2 f1; : : : ; jLj=2g g;let actual denote the �rst item of L;1 while (L is not empty)f2 while (last entry of L[actual] is negative)f set actual to successor of actual in L; glet i be the single (positive) element of L[actual];set search to predecessor of actual in L;3 while ((search 6= undef) and (last entry j of L[search] 6= �i))fadd new edge f[�i; i]; [�j; j]g to Conflict;if (successor aux of search in L 6= actual)f append list L[aux] to L[search]; remove aux from L; g/* now the successor of search in L is actual again */set search to predecessor of search in L;g4 if (search == undef) return (false; Conflict);set actual to successor of actual in L;remove list fig from L and (last) element �i from L[search];if (L[search] is the empty list) remove search from L;greturn (true;Conflict);

8Circle Graph Is Bipartite uses this function in order to decide whether circlegraph C given by standard representation L is bipartite.Circle Graph Is Bipartite(list of list of integer L)bool ok; graph Conflict; list of chord P ;(ok;Conflict) = Generate Conict Graph(L);if (ok == false) return (false; fg);if (Conflict is not bipartite) return (false; fg);denote by P � V (Conflict) one partition classof a bipartation of Conflict;return (true; P);Now we prove the correctness of Circle Graph Is Bipartite.Lemma 3 If function Generate Conict Graph(L) returns false, then the cir-cle graph C with standard representation L is not bipartite.Proof: In a standard representation L of C �i is always contained in alist preceding fig for all i 2 f1; : : : ; jLj=2g. This property remains validduring the course of Generate Conict Graph. While searching for the negativenumber �i corresponding to a positive one i (3), all negative integers, ie alldetected conicts (Lemma 2), are noted by adding an edge to the graphConflict. All lists between the list containing �i and fig are concatenatedresulting in one single list. For any feasible bipartation of C the chords[�j; j] corresponding to the elements �j of this list have to be members ofthe same partition class (not containing [�i; i]). No other conicts betweenthese chords in C are possible without violating the bipartiteness of C.The only reason for not �nding �i (4), is that it is \hidden" in one of thelists preceding fig, ie �i is not the last element of its list. Therefore in thelist containing �i each �j succeeding �i indicates a conict between chord[�j; j] and chord [�i; i]. This shows that C is not bipartite. 2The example illustrates the problem mentioned in the proof above. Non-bipartiteness of C is detected since �2 is \hidden" in f�2;�3g.
−3

−1

−2

1

2

3

−2
−3

2 3

−1 −2 −3 1 2 3

c

C=K
3

[−1,1]−−[−2,2]
[−1,1]−−[−3,3] [−1,1]

[−2,2][−3,3]

9Lemma 4 If the generated graph Conflict is not bipartite then the circlegraph C is not bipartite.Proof: Conflict is isomorphic to a subgraph of C. 2Now an example for a non-bipartite graph C (since Conflict is not bipartite):
−5−3

−4
−2 4 2 3 5

−5−3 −2 2 3 5

−3
−5−3 3 5

−2−1 −4 1 4 −5 2 3 5−3

[−1,1]−−[−3,3]
[−1,1]−−[−4,4]

[−4,4]−−[−2,2]

[−2,2]−−[−5,5]

−1

−3

−4 −2

−5

1

2

35

4

c

C=C
5 [−1,1]

[−3,3]

[−5,5][−2,2]

[−4,4][−3,3]−−[−5,5]Lemma 5 If Circle Graph Is Bipartite(L) returns true, then circle graph Cwith standard representation L is bipartite.Proof: Colour the chords of circle graph C according to the generated par-tition of the corresponding vertices of Conflict. Assume this two-colouringis not feasible. Then at least two crossing chords have been coloured thesame, ie the corresponding vertices in Conflict are not connected by an oddpath.The �rst time a pair �i; i in Generate Conict Graph is removed an edge inConflict is inserted between the vertex [�i; i] and the ones representing thenegative integers between �i and i. (Therefore the corresponding verticesare pairwise connected by paths of length 2.) Then these integers are joinedin one list. Each new removal of a pair �j and j leads to conict edgesbetween the vertex [�j; j] and all representatives of the last elements of listsin between. These representatives have already been connected by paths ofeven length to all representatives of preceding list elements. This results inodd paths between the vertex [�j; j] and every vertex representing an elementof a list between �j and j. Therefore all conicts (ie edges) between chordsin C are detected and noted either by edges or by odd paths in Conflict,contrary to the assumption. 2A k � k grid graph illustrates that the number of edges in Conflict is\linear" although the number of conicts is \quadratic". The 3� 3 grid

10graph of the example shows a complete run of the algorithm giving a bipar-tation f[�2; 2]; [�3; 3]; [�5; 5]g[f[�1; 1]; [�4; 4]; [�6; 6]g.
[−3,3]−−[−6,6]
[−3,3]−−[−4,4]
[−3,3]−−[−1,1]

−2−5−3 −1 −4 −6 1 23 4 56
−2−1

−4
4 1 26

−6

−5 5

[−6,6]−−[−2,2]
[−6,6]−−[−5,5]

[−4,4]−−[−2,2]
[−1,1]−−[−2,2]

−2

−5

−3

−1
−4

−6

3

5

2

6
41

c C=K
3,3

−1
−4 −2

−5 4 1 2 5 −1

−2
−5 1 2 5

−2
−5 2 5

[−5,5]

[−1,1]

[−2,2]

[−3,3]
[−4,4]

[−6,6]Corollary 6 Circle Graph Is Bipartite(L) returns true, if and only if, the cir-cle graph C with standard representation L is bipartite. 2Now we show that Generate Conict Graph(L) runs in time linear in thesize of L. The order of Conflict is equal to the order of C. Within while-loop (2) every integer is visited once. The total running time of while-loop(3) is linear in the number of edges inserted in Conflict as all operations inwhile-loop (3) require only constant time and due to the removal of fig and�i no edge is added twice. What remains to be shown is that the number ofedges of Conflict is linear in the size of L (and jV (Conflict)j).Lemma 7 jE(Conflict)j < 2jV (Conflict)j:Proof: Let n = jV (Conflict)j be the number of chords of the circle graph.Denote by ci the number of connected components of Conflict and by eithe number of edges created during the i-th step of the main loop (1) ofGenerate Conict Graph. Initially we have c0 = n and after the completion ofGenerate Conict Graph cn � 1. In each step at most one of the edges creatednewly connects vertices of the same component. All other edges decrease thenumber of connected components, each by one. Therefore ei � ci�1 � ci + 1for 1 � i � n. Now we bound e = jE(Conflict)j from above bye = nXi=1 ei � nXi=1(ci�1 � ci + 1) = n+ c0 � cn � n+ n � 1 < 2n: 2Corollary 8 Circle Graph Is Bipartite(L) runs in time linear in jLj. 2

115 Planarity testing/embedding of hamilto-nian graphs5.1 IntroductionFor the rest of this section we assume that the hamiltonian input graphG with V (G) = f1; 2; :::; ng is given via incidence lists. Its vertices arenumbered ascendingly from 1 to n according to their appearances in thegiven hamiltonian cycle HC.We also assume that jE(G)j = O(jV (G)j), since this is a necessary con-dition for the planarity of a graph (Lemma 1). This is checked at the verybeginning of function Planar Hamilton Embedding to be introduced later.We consider HC as \circle" �C and the edges of E(G) � HC as set of\chords" CH. Let C be the circle graph wrt to �C and CH. We call C thecircle graph wrt to G and HC, too. Denote for fu; vg 2 E(G) � HC bydvu = (v � u) mod jV (G)j the distance from u to v in G.The next lemma shows the equivalence of the planarity of G and thebipartiteness of C.Lemma 9 The graph G with hamiltonian cycle HC is planar, if and onlyif, the circle graph C wrt G and HC is bipartite.Proof: (if) Consider an embedding of HC being numbered counterclock-wise. Since C is bipartite its chords can be partitioned into two crossing-freeclasses. Denote the corresponding sets of edges by A and B. Now sort allincidence lists of G resulting inINC[v] = ffv; 1 + (v mod jV (G)j)g; fv; u1g; : : : ; fv; ukg;fv; 1 + ((v � 2) mod jV (G)j)g; fv;w1g; : : : ; fv;wlggwith 8i 2 f1; : : : ; kg : fv; uig 2 A; duiv < dui+1v and 8j 2 f1; : : : ; lg : fv;wjg 2B; dwjv > dwj+1v . This results in an embedding of G thus proved to be planar.(only if) Consider the embedding of G given. The chords correspondingto the edges of E(G)�HC inside HC do not cross. The same applies to thechords corresponding to the edges of E(G) � HC outside HC. Thus bothsets of chords are independent sets of C whose union is CH. Therefore C isbipartite. 2

125.2 AlgorithmFirst we describe the procedure Preprocessing, which takes G as input. Itreturns a standard representation L of the circle graph C wrt G and HCand the mapping M of chords of C to their corresponding edges from HC =E(G)�HC.Preprocessing(graph G)list L; edge array N ; list of edge HC; array of edge M ;HC = f e = fu; vg 2 E(G) j ((v � u) mod jV (G)j) 62 f1; jV (G)j � 1g gnumber in N the edges of HC by f1; : : : ; jE(G)j � jV (G)jg;forall e 2 HC: M [N [e]] = e;1 L = f(dvu; u;�N [e]); (duv; v;N [e]) j e = fu; vg 2 HC;u < vg2 sort L decreasingly using stable bucket sort in the range[2; : : : ; jV (G)j � 2] by the tupels �rst entries;3 sort L increasingly using stable bucket sort in the range[1; : : : ; jV (G)j] by the tupels second entries;replace each tupel (d; u; i) of L by the the list fig resultingin L being a list of list of integer;return (L;M);Lemma 10 The list L returned by function Preprocessing(G) is a standardrepresentation of the circle graph C wrt G and HC. Preprocessing(G) runsin time O(jV (G)j).Proof: Each number i 2 f1; : : : ; jE(G)j � jV (G)jg occurs exactly once asf�ig and once as fig in L (1), and jLj = 2(jE(G)j � jV (G)j). f�ig occursbefore fig in L because of (3) and u < v in (1). Consider HC as a circlenumbered counterclockwise. The �rst stable bucket sort (2) realizes implic-itly the order of chords with common endpoint according to their distance.The second stable bucket sort (3) moves chords with common endpoint tosuccessive positions in L preserving the order of (2) for single vertices. There-fore the generated list L is a standard representation of the circle graph Cwrt G and HC (c corresponding to vertex 1).Since jLj < 2jE(G)j and the mapping range of the two bucket sorts is alsolinear in jV (G)j, Preprocessing(G) runs in timeO(jV (G)j) due to the remarkson data structures in Section 2 and the assumption made at the beginningof this section. 2

13Assume that the circle graph C wrt G and HC is bipartite. We describe theprocedure Postprocessing, which modi�es G to be an embedding.Postprocessing(graph G , list of list of integer L,array of edge M , list of chord P)array of bool inside;forall i 2 f1; : : : ; jLj=2g: inside[i] = true;forall elements [�i; i] of P : inside[i] = false;1 forall fjg in Lfe = M [jjj] = fu;wg with u < w;if (j < 0) v = u; else v = w;if (inside[jjj] == true)G move edge(e; v; fv; 1+ (v mod jV (G)j)g; after)elseG move edge(e; v; fv; 1+ (v mod jV (G)j)g; before);gLemma 11 Function Postprocessing modi�es G to be an embedding. Itrequires O(jV (G)j) time.Proof: Within L the edges having one endpoint v in common are sorteddecreasingly according to dwv . This order is preserved within the list of edgesto be moved before the hamiltonian cycle edge fv; 1 + (v mod jV (G)j)g. Itis reversed within the list of edges moved after the hamiltonian cycle edgefv; 1 + (v mod jV (G)j)g. The second hamiltonian cycle edge fv; 1 + ((v �2) mod jV (G)j)g is not moved, ie its position is between the edge of largestdistance placed after fv; 1+(v mod jV (G)j)g and the edge of largest distanceplaced before fv; 1+ (v mod jV (G)j)g. Therefore the order generated withinthe incidence lists INC[v] is the same as the one in the proof of Lemma 9(if-part).The running time of (1) is linear in jLj=2, ie in jV (G)j: All operations withinloop (1) can be done in constant time as stated in Section 2. 2

14Now we present the main procedure, Planar Hamilton Embedding, puttingthe developed things together. It returns true if G is planar and embeds Gin this case. Otherwise it returns false.Planar Hamilton Embedding(graph G)list of list of integer L; array of edge M ; list of integer P ; bool bip;0 if (jE(G)j > 3jV (G)j � 6) return false;1 (L;M) = Preprocessing(G);2 (bip; P) = Circle Graph Is Bipartite(L);3 if (bip == false)return false;elsef4 Postprocessing(G;L;M;P);return true;gCorollary 12 Planar Hamilton Embedding(G) returns true, if and only if, Gis planar. If G is planar then it is modi�ed to be an embedding.Proof: Lemma 1 shows that aborting with false in (0) is correct. Lemma10 ensures that Preprocessing(G) returns a standard representation L of thecircle graph C wrt G and HC. By Lemma 9 C is bipartite, if and only if,G is planar. Thus aborting with false in (3) is correct. By Lemma 11 G ismodi�ed to be an embedding if being planar (4). This completes the proof.2Lemma 13 Planar Hamilton Embedding(G) runs in time and spaceO(jV (G)j).Proof: No part of Planar Hamilton Embedding or the other functions workson uninitialized data. Therefore showing running timeO(jV (G)j) implies theuse of only O(jV (G)j) space.The �rst test (0) can be done in time O(jV (G)j) by visiting edges one byone and aborting if having seen 3jV (G)j � 5 di�erent edges. (1), (2) and (4)have O(jV (G)j) running time by Lemma 10, Corollary 8, and Lemma 11. 2

15References[1] Di Battista, G., Eades, P., Tamassia, R., Tollis, I.G.Algorithms for drawing graphs: an annotated bibliographyNovember 1993, available via anonymous ftp from wilma.cs.brown.edu,�le /pub/gdbiblio.tex.Z[2] Even, S.Graph AlgorithmsComputer Science Press, Rockville, MD, 1979[3] Fischer, G.J.,Wing, O.Computer recognition and extraction of planar graphs from the inci-dence matrixIEEE Transactions on circuit theory, ct-13(2) 1966, 154-163[4] Hopcroft, J.E., Tarjan, R.E.E�cient planarity testingJournal of the Association for Computing Machinery, 21(4) 1974, 549-568[5] Hundack, C., Stamm-Wilbrandt, H.E�cient bipartation of circle hypergraphsReport IAI-TR-94-xx, Institut f�ur Informatik III, Universit�at Bonn,1994[6] Mehlhorn, K.Graph algorithms and NP-completeness,Data structures and algorithmsvol.2Springer-Verlag, Berlin, 1984[7] Stamm-Wilbrandt, H.A simple linear time algorithm for embedding maximal planar graphsReport IAI-TR-93-10, Institut f�ur Informatik III, Universit�at Bonn,1993

